МАТЕМАТИЧНІ МОДЕЛІ ТА АЛГОРИТМИ

Топологоэксергетический подход при исследовании эксергетической эффективности способов соединения элементов физико-технологических систем (часть 2)

КРАВЕЦ О.А., ДОЛГОПОЛОВ И.С., ТУЧИН В.Т.

Днепродзержинский государственный технический университет

Во второй части статьи рассмотрено применение топологоэксергетического метода при исследовании эксергетической эффективности последовательного и параллельного соединений двух водо-водяных тепло-обменников.

У другій частині статті розглянуто застосування топологоексергетичного методу при дослідженні ексергетичної ефективності послідовного та паралельного з'єднань двох водо-водяних теплообмінників.

In the second part of paper application topology-exergy method is considered at research exergy efficiency of consecutive and parallel connections two water-moderated, heat exchangers.

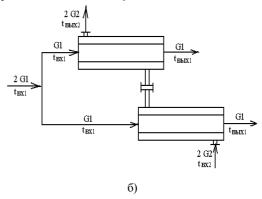
Введение. В первой части статьи рассмотрено применение топологоэксергетического метода для разработки математических моделей, позволяющих оценить эксергетическую эффективность элементарных схем соединения элементов ФТС (последовательного, параллельного, смешанного, с рециклом) с учетом конструктивно-технологических параметров элементов. Достоинством топологоэксергетического подхода является возможность решения практических задач повышения энергетической эффективности различных физико-техноло-

гических систем. Далее рассмотрен пример исследования эффективности схем соединений элементов, иллюстрирующий применение теоретических разработок.

Постановка задачи. Исследовать эксергетическую эффективность последовательного и параллельного соединений двух водо-водяных теплообменников типа «груба в трубе», в которых греющий теплоноситель движется по внутренней стальной трубе, а нагреваемый — по внешней. Исходные данные для расчета приведены в таблице 1.

Таблица 1. Исходные данные для расчета

Название показателя	Обозна-	Единицы	Параллельное	Последовательное
	чение	измерения	соединение	соединение
Диаметры внутренней трубы:				
внешний	$\mathbf{d}_{\scriptscriptstyle{\mathbf{B}\mathbf{H}\mathbf{e}\mathbf{m}\mathbf{H}}}$	M	0,035	0,035
внутренний	$\mathbf{d}_{\scriptscriptstyle \mathrm{BH}}$.	M	0,032	0,032
Коэффициент теплопроводности	λ	Вт/м°С	45	45
* *	Λ.	DI/M C	43	43
Температура теплоносителя на входе		00	0.5	0.5
теплообменника	t _{BX1}	°C	95	95
			2130	2130
Расход греющего теплоносителя	G1	кг/ч	(на каждый)	(на два)
Внутренний диаметр внешней трубы	D _{внешн.}	М	0,048	0,048
Температура теплоносителя на входе				
теплообменника	t_{BX2}	°C	15	15
Расход нагреваемого теплоносителя			3200	6400
	G2	кг/ч	(на каждый)	(на два)
Длина секции теплообменника	L	M	3	3


Методика решения. Критериями эксергетической эффективности ФТС выступают эксергетический КПД системы (η_e) и диссипативный коэффициент (η_{nor}). При решении задачи приняты ограничения: рассматриваем стационарный режим функционирования; объект моделирования представляем как физико-технологическую систему с сосредоточенными параметрами; считаем, что система хорошо изо-

 $\begin{array}{c|c}
G_1 \\
\hline
t_{\text{BM1}}
\end{array}$ $\begin{array}{c|c}
G_1 \\
\hline
t_{\text{BM1}}
\end{array}$ $\begin{array}{c|c}
G_1 \\
\hline
t_{\text{BM2}}
\end{array}$ $\begin{array}{c|c}
G_2 \\
\hline
t_{\text{BM2}}
\end{array}$ $\begin{array}{c|c}
G_1 \\
\hline
t_{\text{BM2}}
\end{array}$ $\begin{array}{c|c}
G_2 \\
\hline
t_{\text{BM2}}
\end{array}$

лирована, пренебрегаем потерями эксергии в окружающую среду.

Схемы соединения теплообменников представлены на рис. 1.

Топологоэксергетическая структура связи для параллельного соединения теплообменников приведена на рис. 2. Для последовательного соединения теплообменников топологоэксергетическая структура связи строится аналогичным образом.

Puc. 1. Схемы параллельного (а) и последовательного (б) соединений теплообменников по нагреваемому теплоносителю

В соответствии с рис. 2 на основе формализованной процедуры вывода уравнений [1-4] получаем систему уравнений, из которой находим

$$\begin{split} e_{37}\cdot\dot{m}_{37} &= (e_1\cdot\dot{m}_1 + e_{15}\cdot\dot{m}_{15}) - (e_{14}\cdot\dot{m}_{14} + \\ &+ e_{23}\cdot\dot{m}_{23}) - 2\cdot(R_{13}\cdot\dot{m}_{13}^2 + R_{\alpha 1}^e\cdot\dot{m}_{4}^2 + \\ &+ R_{\lambda}^e\cdot\dot{Q}_7^2 + R_{\alpha 2}^e\cdot\dot{m}_{10}^2 + R_{17}\cdot\dot{m}_{17}^2) \end{split}$$

Определяем значение эксергетического КПД и потери эксергии для данного вида соединения

$$\begin{split} &\eta_E = & \frac{e_{37} \cdot \dot{m}_{37} - e_{15} \cdot \dot{m}_{15}}{2 \cdot e_2 \cdot \dot{m}_2 - e_{14} \cdot \dot{m}_{14} - e_{23} \cdot \dot{m}_{23}} = \\ &= \frac{(2 \cdot e_2 \cdot \dot{m}_2) - (e_{14} \cdot \dot{m}_{14} + e_{23} \cdot \dot{m}_{23}) - 2 \cdot (R_{13} \cdot \dot{m}_{13}^2}{2 \cdot e_2 \cdot \dot{m}_2 - e_{14} \cdot \dot{m}_{14} - e_{23} \cdot \dot{m}_{23}} + \\ &+ \frac{R_{\alpha 1}^e \cdot \dot{m}_4^2 + R_{\lambda}^e \cdot \dot{Q}_7^2 + R_{\alpha 2}^e \cdot \dot{m}_{10}^2 + R_{17} \cdot \dot{m}_{17}^2)}{2 \cdot e_2 \cdot \dot{m}_2 - e_{14} \cdot \dot{m}_{14} - e_{23} \cdot \dot{m}_{23}} \\ &D_e = 2 \cdot (R_{13} \cdot \dot{m}_{13}^2 + R_{\alpha 1}^e \cdot \dot{m}_4^2 + R_{\lambda}^e \cdot \dot{Q}_7^2 + \\ &+ R_{\alpha 2}^e \cdot \dot{m}_{10}^2 + R_{17} \cdot \dot{m}_{17}^2) \end{split}$$

Суммарное значение потерь эксергии находим по закону Γ юи - Стодолы:

$$D_e = Toc \cdot \frac{T_B - T_A}{T_B \cdot T_A} \cdot k \cdot F \cdot (T_B - T_A)$$

Значение диссипативного коэффициента

$$\eta_{\text{\tiny IIOT}} = \frac{D_e}{2 \cdot e_2 \cdot \dot{m}_2 - e_{14} \cdot \dot{m}_{14} - e_{23} \cdot \dot{m}_{23}}$$

Из системы уравнений последовательного соединения, полученной в соответствии с топологоэксергетической структурой связи, находим эксергетический КПД и потери эксергии

$$\begin{split} \eta_E &= \frac{e_{34} \cdot \dot{m}_{34} - e_{27} \cdot \dot{m}_{27}}{e_2 \cdot \dot{m}_{2} + e_{17} \cdot \dot{m}_{17} - e_{16} \cdot \dot{m}_{16} - e_{30} \cdot \dot{m}_{30}} = \\ &= 1 - \frac{\dot{m}_{29}^2 \cdot R_{29} - \dot{m}_{19}^2 \cdot R_{\alpha 11}^E - Q_{22}^2 \cdot R_{\lambda 11}^E - \dot{m}_{25}^2 \cdot R_{\alpha 22}^E}{e_2 \cdot \dot{m}_2 + e_{17} \cdot \dot{m}_{17} - e_{16} \cdot \dot{m}_{16} - e_{30} \cdot \dot{m}_{30}} - \\ &- \frac{\dot{m}_{12}^2 \cdot R_{12} - \dot{m}_{32}^2 \cdot R_{32}}{e_2 \cdot \dot{m}_2 + e_{17} \cdot \dot{m}_{17} - e_{16} \cdot \dot{m}_{16} - e_{30} \cdot \dot{m}_{30}} \\ D_E &= \dot{m}_{29}^2 \cdot R_{29} - \dot{m}_{19}^2 \cdot R_{\alpha 11}^E - Q_{22}^2 \cdot R_{\lambda 11}^E - \\ &- \dot{m}_{25}^2 \cdot R_{\alpha 22}^E - R_{15} \cdot \dot{m}_{15}^2 - \dot{m}_{4}^2 \cdot R_{\alpha 1}^E - Q_{7}^2 \cdot R_{\alpha 1}^E - \\ &- \dot{m}_{10}^2 \cdot R_{\alpha 2}^E - \dot{m}_{12}^2 \cdot R_{12} - \dot{m}_{32}^2 \cdot R_{32} \end{split}$$

Результаты расчетов критериев эксергетической эффективности ФТС при последовательном и параллельном соединении теплообменников приведены в таблице 2.

 $\it Tаблица~2.$ Результаты расчетов критериев эксергетической эффективности ФТС при последовательном и параллельном соединении теплообменников

Название показателя	Обозначение	Последовательное соединение	Параллельное соединение
Эксергетический КПД системы, %	$\eta_{\scriptscriptstyle E}$	30	27,2
Коэффициент эксергетических потерь, %	η_{nom}	70	72,8

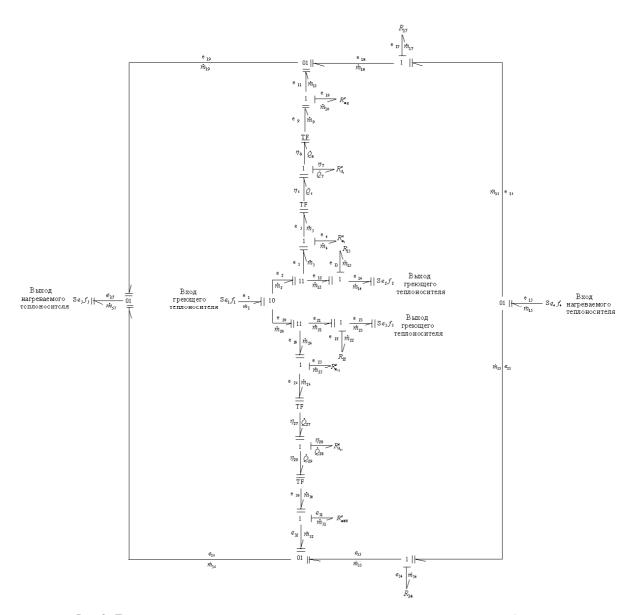


Рис. 2. Топологоэксергетическая структура связи параллельного соединения теплообменников

Анализ результатов. Полученные результаты дают возможность определить направления повышения эксергетической эффективности рассмотренных систем соединения теплообменных аппаратов путем изменения их конструктивно-технологических показателей.

Рассмотрим задачу влияния режимных параметров системы соединения теплообменников при их неизменных конструктивных характеристиках, которая часто встречается на практике. В этом случае на эксергетическую эффективность системы можно влиять путем изменения технологических показателей — температур, расходов теплоносителей и изменением давления в трактах. Рассмотрим влияние изменения расходов горячего и холодного теплоносителей, подаваемых в теплообменники. На рис. З и 4 приведены графики зависимостей эксергетических КПД от соотношений расходов горячего и холодного теплоносителей для параллельного и последовательного соединений теплообменников,

значения конечных температур потоков теплоносителей представлены в табл. 3 и 4.

При увеличении значений соотношения расходов G1/G2 при G2=const наблюдается тенденция увеличения эксергетического КПД схем последовательного и параллельного соединений, а при увеличении G1/G2 (G1=const) - уменьшение эксергетического КПД для рассмотренных схем соединений теплообменников. Разница между значениями эксергетических КПД для последовательного и параллельного соединений соответственно: в начале интервала при G1/G2=0,625 (G2=const) составляет 2,3%, в конце интервала при G1/G2=0,938 составляет 3,8%; в начале интервала при G1/G2=0,609 (G1= const) составляет 2,9%, в конце интервала при G1/G2=0,71 составляет 2,2%. Следовательно, удельное приращение КПД (на единицу приращения расхода) при последовательном соединении выше.

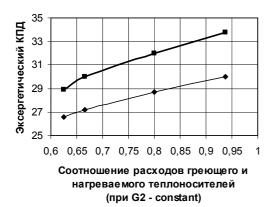


Рис. 3. График зависимости эксергетического КПД от соотношений расходов греющего и нагреваемого теплоносителей (при изменении расхода греющего теплоносителя): — для параллельного соединения теплообменников; — для последовательного соединения теплообменников.

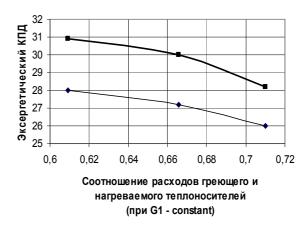


Рис. 4. График зависимости эксергетического КПД от соотношений расходов греющего и нагреваемого теплоносителей (при изменении расхода нагреваемого теплоносителя): — для параллельного соединения теплообменников; — для последовательного соединения теплообменников.

 $\it Tаблица~3.~$ Величины конечных температур в зависимости от соотношения расходов теплоносителей (при G2=const)

Общий массо-	Соотноше-	Параллельное соединение		Последовательное соединение	
вый расход	ние расходов	теплообменников		теплообменников	
греющего теп-	G1/G2	Конечная	Конечная	Конечная темпе-	Конечная
лоносителя через	при G2=const	температура	температура	ратура греющего	температура
оба теплообмен-		греющего	нагреваемого	теплоносителя,	нагреваемого
ника,G1, кг/ч		теплоносителя,	теплоносителя,	°C	теплоносителя
		°C	°C		°C
4000	0,625	42,6	50,9	44,4	52,5
4260	0,666	43,5	52,3	45,6	53,7
5120	0,8	46,1	56,1	49	58
6000	0,938	48,4	59,4	51,8	60,8

 $\it Taблица~4.~$ Величины конечных температур в зависимости от соотношения расходов теплоносителей (при G1=const)

Общий массо-	Соотно-	Параллельное соединение теплооб-		Последовательное соединение теплооб-	
вый расход	шение рас-	менников		менников	
нагреваемого	ходов	Конечная темпе-	Конечная	Конечная темпе-	Конечная темпера-
теплоносителя	G1/G2	ратура	температура	ратура греющего	тура нагреваемого
через оба теп-	при	греющего	нагреваемого	теплоносителя,	теплоносителя,
лообмен-ника,	G1=const	теплоносителя,	теплоносителя,	°C	°C
G2, кг/ч		°C	°C		
6000	0,71	44,6	53,3	47	54,8
6400	0,666	43,5	52,3	45,6	53,7
7000	0,609	41,9	50,9	43,6	52,2

На основании этих данных можно сделать вывод о том, что для условий данной задачи в эксергетическом отношении последовательное соединение теплообменников эффективнее параллельного.

Выводы

- Рассмотрено топологоэксергетическое моделирование ФТС на примерах анализа схем последовательного и параллельного соединений теплообменных аппаратов.
- Приведены аналитические зависимости для определения показателей эксергетической эффективности схем соединения теплообменников, учитывающие влияние конструктивно-технологических показателей.
- Приведенные результаты расчетов показывают возможности топологоэксергетического подхода в энергетическом анализе схем последовательного и параллельного соединений теплообменников.

Условные обозначения

 Φ TC — физико-технологическая система; e_i — удельная эксергия i—го потока, обобщенное усилие; \dot{m}_i — массовый расход i-го потока , обобщенный поток; Se_if_i — источник обобщенного усилия и потока; $R_i^{\ 9}$ — i-ый диссипатор эксергии потока; $R_{\text{см}}^{\ 9}$ — диссипатор эксергии при смешении потоков различной эксергетической мошности:

 η_i - фактор Карно і-го элемента; Q_i - тепловой поток на і-ом элементе; $R_{\alpha 1}^{\,\, 9}, R_{\alpha 11}^{\,\, 9}$ - диссипаторы эксергии, отражающие потери эксергии в результате необратимого теплообмена между греющим теплоносителем и стенкой теплообменников; $R_{\lambda 1}^{\,\, 9}, R_{\lambda 11}^{\,\, 9}$ - диссипаторы эксергии, отражающие потери эксергии в результате необра-

тимого теплообмена в стенках труб; $R_{\alpha 2}^{\,3}, R_{\alpha 22}^{\,3}$ - диссипаторы эксергии, отражающие потери эксергии в результате необратимого теплообмена между стенкой теплообменников и нагреваемым теплоносителем; T_B , T_A - соответственно средние температуры греющего и нагреваемого теплоносителей по длине теплообменника; F — площадь теплообменника; F — коэффициент теплопередачи.

Индексы

е - эксергетический; д - диссипативная составляющая; см - смешение.

ЛИТЕРАТУРА

- Тучин В.Т., Долгополов И.С., Братута Э.Г., Тучина У.Н. Энергетические аспекты топологоэксергетического метода описания физико-технологических систем (ФТС). Часть 1// Інтегровані технології та енергозбереження. –2004, 4. С. 81-89.
- 2. Тучин В.Т., Долгополов И.С., Братута Э.Г., Тучина У.Н. Энергетические аспекты тополого-эксергетического метода описания физико-технологических систем (ФТС). Часть 2// Інтегровані технології та енергозбереження. –2004, 4. С. 36-42.
- Долгополов И.С., Тучин В.Т. Обобщен-ная эксергодиссипативная функция как основа топологоэксергетического анализа физико-технологических систем // Сборник научных трудов Национальной металлургической академии Украины. - Днепропетровск: НМетАУ, 2002.- т. 5. С. 67 – 71.
- 4. Тучин В.Т., Долгополов И.С. Основы формализма топологоэксергетического метода моделирования физико-технологических систем. // Збірник наукових праць Дніпродзержинського державного технічного університету (технічні науки).- Дніпродзержинськ: ДГТУ, 2006.- С. 202 -213.

пост. 12.06.09