Компьютерная система поддержки принятия решений в задачах выбора оптимального состава доменной шихты в современных сырьевых условиях Украины

А. И. БЕЛЬКОВА, Л. Т. БОЙКО, Л. А. САФИНА-ВАЛУЕВА, Ю. М. ЛИХАЧЕВ

Украина, Институт черной металлургии им. З.И. Некрасова НАН Украины Днепропетровский национальный университет

Изложены функциональные возможности компьютерной системы «Шихта» для принятия решений в задачах выбора оптимального состава доменной шихты на основе методов многомерной и одномерной оптимизации, включающих процедуры методов покоординатного спуска и золотого сечения, в современных сырьевых условиях Украины.

Викладено функціональні можливості комп'ютерної системи "Шихта" для прийняття рішень у завданнях вибору оптимального складу доменної шихти на основі застосування методів багатомірної й одномірної оптимізації, що включають процедури методів покоординатного спуска й золотого перерізу, у сучасних сировинних умовах України.

Functionality of computer system "Charge" for decision-making in problems of a choice of optimum structure blast-furnace charge on the basis of the methods of multidimensional and one-dimensional optimisation including procedures of methods coordinate-wise of descent and gold section, in modern raw conditions of Ukraine is stated.

Состояние вопроса. Сложность доменного процесса как объекта исследования, наличие неоднозначного влияния многочисленных факторов, высокий уровень неконтролируемых возмущений и отклонений обуславливают актуальность совершенствования существующих математических моделей и методов оптимизации процессов и свойств расплавов, а также разработки эффективных компьютерных систем, реализующих в своем составе технологические способы для принятия решений по изменению ресурсов управления.

Для обеспечения высокоэкономичной и производительной работы доменных печей важными остаются вопросы выбора оптимального состава загружаемой доменной шихты для получения металла заданного качества в современных нестабильных сырьевых условиях плавки.

Для решения задачи выбора оптимального состава доменной шихты в Институте черной металлургии разработана компьютерная система «Шихта» [1], которая позволяет выполнить априорную оценку технологической ситуации до загрузки шихты в печь и осуществить корректировку состава загружаемой подачи на основе оптимизации шлакового режима по комплексу свойств конечного шлака, обеспечивающих его высокую серопоглотительную способность и получение чугуна требуемого состава.

Целью данной работы является описание функциональных возможностей компьютерной системы для принятия решений в задачах выбора оптимального состава доменной шихты в современных сырьевых условиях доменной плавки Украины.

Изложение основных материалов исследования. Компьютерная система «Шихта» базируется на фундаментальных разработках ИЧМ НАНУ в области физико-химического и математического моделирования структуры и свойств железоуглеродистых и шлаковых расплавов и процессов их взаимодействия [2].

Программный комплекс системы «Шихта» включает модули подсистем «Прогноз», «Диагностика» и «Оптимизация» (рис. I).

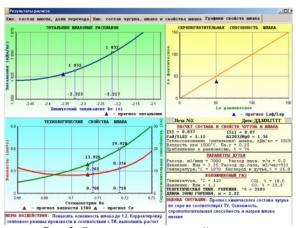
Рис. 1. Структурная схема системы «Шихта»

Расчет состава чугуна и шлака осуществляется в подсистеме «Прогноз» на основе прогнозирования коэффициентов межфазного распределения кремния, серы, марганца и железа в зависимости от интегральных показателей состава шихты (Δe и ρ , содержание Fe_2O_3 или $Fe_{oбщ}$) и комплексных показателей технологии, характеризующих тепловое состояние горна.

Для расчета комплекса свойств первичного и конечного доменного шлака (вязкости, поверхностного натяжения, температур начала и конца кристаллизации, энтальпии, серопоглотительной способности шлаков) разработаны прогнозные модели в виде: Свойство =

 $f(\Delta e, \rho, T)$, где $\Delta e, \rho$ – интегральные показатели, характеризующие химическое и структурное состояние шлакового расплава, T - температура.

Установленный экстремальный характер зависимостей вязкости ($\eta = f(\rho, 1/T)$) и энтальпии шлака ($\Delta H_{1500} = f(\Delta e)$) от параметров Δe и ρ для сырьевых условий Украины (puc.1) позволяет использовать их в качестве критериев стабилизации шлакового режима и учитывать при управлении тепловым состоянием горна. Базовые интервалы изменения параметров шлака («интервалы качества»), обеспечивающие выплавку чугуна заданного состава при минимальном расходе кокса и повышенной производительности, уточняются в сырьевых и технологических условиях работы конкретной печи.


По загружаемой подаче с учетом показателей дутьевого режима в системе рассчитываются состав чугуна и шлака, а также свойства шлака (рис. 2), на основе чего формируется видеокадр (рис. 3), отображающий основные технологические свойства конечного шлака и контролируемые параметры стабилизации шлакового режима.

Наименов	вание	Bec	SiO2	Al203	CaO	MgO	MnO	S	Fe	Fe0	Z	Влага	Вын
Кокс		27	0	0	0	0	0	1.4	0	0	11.7	2.2	0.5
Zкокс		0	44.96	24	3.89	1.82	0.7	0	13.17	0	0	0	0
Агломера	T	93	9	1.23	10.82	1.16	0.15		55.08		0	0	3
Окатыши		17	8.66	0.4	3.15	0.88	0.05	-	61.06		0	0	3
Антрацит		4.3	4.2	1.87	0.25	0.14	0.1	1.44	0.41	0	0	4.2	2.5
Известня	K	0.45	1.41	0.6	53.73		0	0.03	2	0	0	2.4	0
Скрап		3	12	2.08	12	2.19	0.06	0.075		0.56	0	0	0.5
Шлак об.	Сигма	5	17.5	2	27	4.5	3.9	0.068	0.010	12.5	0	4.6	0
Bcero			SiO2	Al203	CaO	MgO	MnO	S	Fe	Fe0			
тонн		12.29		12.29		0.36	0.45		10.16				
9/6			10.32	1.8	10.32	1.29	0.3	0.38	53.57	8.53			
лак: Цлак	Bec	SiO2	Al203	CaO	MgO	MnO	S	Fe0	1				
and the same	-	2102	-	-	-								
Іервичный					4.277	0.969	0.303	23.698					
онечный													
Свойства	шлака		7.768	44.46	5.558	0.403	1.555						
Свойства	шлака	ertyNa		44.46	5.558	0.403	1.555 Dimen	sion P	_	SlagPro	perty	SlagP	
Свойства	шлака Ргор СаО	ertyNa /SiO2	me	44.46	5.558	0.403		sion P	.115	SlagPro	perty	1.113	
Свойства	шлака Prop CaO (CaC	ertyNa /SiO2)+MgO	me)/SiO2	44.46	5.558	0.403		sion P	.115 .251	SlagPro	perty	1.113	
Свойства	Prop CaO (CaC	ertyNa /SiO2)+MgO 03/MgO	me)/SiO2			0.403		sion P	.115	SlagPro	perty	1.113 1.252 1.398	
Свойства	шлака Prop CaO (CaC Al2O	ertyNa /SiO2)+MgO)3/MgO þф. pao	me)/SiO2 cnp. cep	а Lsфакт		0.403		sion P	.115 .251	SlagPro	perty	1.113 1.252 1.398 43	
Свойства	Шлака	ertyNa /SiO2)+MgO)3/MgO фф. рас	me)/SiO2 cnp. cep cnp. cep	а Lsфакт а Lsравн.		0.403	Dimen	sion P	.115 .251	SlagPro	perty	1.113 1.252 1.398 43 62	
Свойства	СаО (СаО (СаО (СаО (Соо (Соо (Стег	ertyNa /SiO2)+MgO)3/MgO þф. рас фф. рас	me)/SiO2 ::пр. сер ::пр. сер	а Lsфакт. а Lspавн. ия равно	весия			sion P	.115 .251	SlagPro	perty	1.113 1.252 1.398 43 62 69	
Свойства	Ргор СаО, (СаС А12О Коэс Стег Серс	ertyNa /SiO2)+MgO)3/MgO)ф, рас фф, рас јень до	me)/SiO2 :пр. сер :пр. сер :пр. сер :тижен	а Lsфакт. а Lsравн. ия равно ая спосою	весия	шлака	Dimen	sion P	.115 .251 .953	SlagPro	perty	1.113 1.252 1.398 43 62 69 13	
Свойства	Ргор СаО (СаС А12О Коэс Коэс Стег Серо	ertyNa /SiO2)+MgO)3/MgO фф. рас фф. рас јень до опоглогико-хи	те)/SiO2 спр. сер спр. сер стижен гительн	а Lsфакт а Lsравн. ия равно ая спосоюй эквива	весия	шлака	Dimen	sion P	.115 .251 .953	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.349)
Свойства	шлака Ргор СаО (СаС АІ2О Коэс Коэс Стег Серс Физі	ertyNa /SiO2)+MgO (3/MgO (фф. рас фф. рас пень до опоглогико-хи сиомет	те)/SiO2 спр. сер спр. сер стижен гительн мическо рия шла	а Lsфакт. а Lsравн. ия равно ая спосою ий эквива ика	весия бность алент ш	шлака	Dimen	55ion P 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.115 .251 .953 .3.195 .749	SlagPro	perty	1.113 1.252 1.398 43 62 69 13)
Свойства ineNumber	Шлака Prop CaO (CaC Al2O Kosc Crer Cepc Физа Стем	ertyNa /SiO2)+MgO i3/MgO þф. рас фф. рас ень до опоглог ико-хи киометј	те)/SiO2 спр. сер спр. сер стижен гительн мическо рия шла ра нача	а Lsфакт. а Lsравн. ия равно ая спосо! ий эквива ика па фильт	весия бность элент ш	шлака	%	1	.115 .251 .953 .3.195 .749 349	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.349)
Свойства ineNumber 0	Шлака Prop CaO, (CaC Al2O Kosc Kosc Crer Cepc Физі Crex Temi Temi	егtyNa /SiO2)+MgO)3/MgO фф. рас фф. рас нень до опоглогико-хи киометр ператур	те)/SiO2 спр. сер спр. сер стижен гительн мическо рия шла ра нача ра макс	а Lsфакт. а Lsравн. ия равно ая спосо! ий эквива ика па фильт	весия бность алент ш рации й филь	шлака	Dimen %	sion P 1 1 1 0 0	.115 .251 .953 .3.195 .749 .349 494	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.349)
Свойства ineNumber 0 1	шлака Ргор СаО, (СаС А12О Козо Стег Серо Физі Темі Вязя	егтуNа /SiO2 0+MgO 03/MgO фф. рас рень до опоглого ико-хи сиомет перату перату кость ш	те)/SiO2 спр. серстижен гительн мическо рия шла ра нача пра максилака пра кака	а Lsфакт. а Lsравн. ия равно ая спосо ий эквива ика па фильт имальною и 1300°С	весия бность элент ц рации й филь	шлака	% % °C °C па,сек	sion P 1 1 1 0 0	.115 .251 .953 .3.195 .749 349	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.344 0.706)
CBOЙCIBA ineNumber 0 1 2 3	шлака Prop CaO, (CaO Al2O Koso Crer Cepo Физі Teмі Вязя Вязя	егтуNа /SiO2 0+MgO 03/MgO фф. рас ень до опоглог ико-хи киометр ператур кость ш	те)/SiO2 спр. сер стижен гительн мическі рия шла ра нача ра максі плака пр	а Lsфакт. а Lsравн. ия равно ая спосо ий эквива ика па фильт имальною и 1300°С ии 1450°С	весия бность элент ш рации й филь	шлака	% % °C °C па,сек	sion P 1 1 1 0 0	.115 .251 .953 .3.195 .749 .349 494	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.344 0.706	•
CBOЙCIBA ineNumber 0 1 2 3 4	шлака	sertyNa /SiO2)+MgO; јф, рас фф, рас јень до опоглоз ико-хи ико-хи исость ш сость ш	те)/SiO2 спр. сер спр. сер стижен гительн мическі рия шла ра нача гра макс плака пр	а Lsфакт. а Lsравн. ия равно ая спосо ий экв из фильт имальной и 1300°С и 1450°С и 1500°С	весия бность влент ц рации й филь	шлака	% °С °С па,сек па,сек па,сек	1	.115 .251 .953 .3.195 .749 .349 494	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.349 0.706	
CBOÑCIBA ineNumber 0 1 2 3 4	шлака Ргоррам	местуNа /SiO2)+MgO; /SiO3/MgO /ф, рас фф, рас нень до поглоз ико-хи исость ш сость ш сость ш	те)/SiO2 спр. серстиженитизекория шла ра нача ра максорияа при плака при плака при плака при плака при плака при	а Lsфакт. а Lsравн. ия равно ая спосо! йй эквива ака ла фильт имально ии 1300°С ии 1450°С ии 1500°С ии 150°С	весия бность прации й филь:	шлака	9/6 °C °C па,сек па,сек па,сек	Sion P 1 1 1 1 1 1 1 1 1	.115 .251 .953 3.195 .749 349 494 .457	SlagPro	pperty	1.113 1.252 1.398 43 62 69 13 -2.344 0.706	
CBOHCIBA ineNumber 0 1 2 3 4 5 6	шлака Ргорр СаО (СаС (СаС КоэС КоэС Стет Темм Вязы Вязы Повы	/SiO2)+ MgO() (3/MgO)фф. рас фф. рас еень до отнень д	me)//SiO2)/SiO2 спр. сер стижен стижен ра нача ра нача плака пр плака пр плака пр	а Lsфакт. а Lsравн. ия равно ая спосой й эквива ка па фильт имальной и 1300°С ии 1500°С ии 1500°С	весия бность прации й филь:	шлака плака грации	9/6 °C °C па,сек па,сек мн/м	Sion P 1 1 1 1 1 1 1 1 1	.115 .251 .953 .3.195 .749 .349 494	SlagPro	pperty	1.113 1.252 1.398 43 62 69 13 -2.344 0.706 0.362 0.254 0.182	
Свойства ineNumber 0 1 1 2 3 3 4 4 5 5 6	Вязы	/SiO2)+ MgO() (3/MgO) фф. расе фф. расе нь до отнень д	me)//SiO2)/SiO2 спр. сер стижен стижен ра нача ра нача плака пр плака пр плака пр	а Lsфакт. а Lsравн. ия равно ая спосо! йй эквива ака ла фильт имально ии 1300°С ии 1450°С ии 1500°С ии 150°С	весия бность прации й филь:	шлака плака грации	% °С °С па,сек па,сек па,сек ни/м ми/м	1	.115 .251 .953 3.195 .749 349 494 .457	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.349 0.706 0.362 0.254 0.182	
CBOHCIBA ineNumber 0 1 2 3 4 5 6	шлака Ргорр СаО (СаС (СаС Коэс Коэс Стег Серс Физа Теми Вязы Вязы Вязы Пови Лови Энтга	менетума (/sio2 /sio2 /	me)/SiO2) спр. сер спр. сер стижен мически мически ра нача ра нача плака пр плака пр	а Lsфакт. а Lsравн. ия равно ая спосой й эквива ка па фильт имальной и 1300°С ии 1500°С ии 1500°С	весия бность прации й филь:	шлака плака грации	9/6 °C °C па,сек па,сек мн/м	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.115 .251 .953 3.195 .749 349 494 .457	SlagPro	perty	1.113 1.252 1.398 43 62 69 13 -2.344 0.706 0.362 0.254 0.182	

 $\it Puc.~2$. Расчет состава и свойств продуктов доменной плавки в системе «Шихта»

Прогнозирование состава чугуна и шлака в зависимости от изменяющихся шихтовых и технологических условий по сравнению с традиционным подходом при постоянных коэффициентах распределения повышает точность прогноза состава продуктов плавки и позволяет на этапе формирования подачи выполнить априорную оценку технологической ситуации. В случае

выхода показателей стабилизации шлакового режима Δ е и ρ за пределы «интервалов качества» на графиках C_s , вязкости и энтальпии в подсистеме «Диагностика» формируются рекомендации по изменению ресурсов управления, в частности, корректировке состава шихты или показателям дутьевого режима.

 $\it Puc.~3.~$ Оценка технологической ситуации в системе «Шихта»

Оптимизация шихты и технологических условий позволяет найти такой их оптимальный набор, при котором чугун и шлак будут иметь заданные характеристики. Это даёт возможность контролировать свойства продуктов доменной плавки через входные параметры, которыми являются: состав и количество шихтовых материалов, параметры технологии выплавки чугуна в доменной печи (дутьевой режим).

В технологической постановке задачей оптимизации является определение оптимального состава шихты по заданным ее компонентам (расходу и химическому составу), который обеспечит выплавку чугуна требуемого состава при минимальном расходе кокса и (или) максимальной производительности печи (выход чугуна). При этом следует удовлетворить все требования, которые накладываются на материалы шихты и продукты плавки.

Математическая постановка задачи нахождения оптимального состава шихты при заданных характеристиках продуктов плавки и технологии формулируется как нахождение вектора расходов шихтовых материалов $X = (x_1, x_2, ... x_m)$, который дает минимум функции:

$$z(X) = z(x_1, x_2, ... x_m) \rightarrow \min_{Xi \in I \subseteq \{1, 2, ..., m\}}$$
 (1)

при следующих условиях:

$$\begin{cases} 0 \le a_i \le x_i \le b_i, i = \overline{1, m} \\ e_k \le f_k(X) \le d_k, k \in K_1 \subseteq \overline{\{1, r\}} \\ f_k(X) = F_k, k \in K_2 \subseteq \overline{\{1, r\}} \\ g_1(X) = G_1, l = \overline{1, p} \end{cases}$$

$$(2),$$

где I - множество номеров материалов, по которым происходит оптимизация;

 $K = K_1 \cup K_2$ - множество контролируемых номеров параметров;

z(X) - целевая функция;

 G_1 - множество возможных соотношений между входными параметрами материалов шихты;

 a_i, b_i, e_k, d_k, F_k - заданные числа;

т - количество материалов шихты; п - количество компонентов шихты; г - количество параметров шлаков и чугуна, на которые устанавливаются ограничения в задаче (внешние параметры); р - количество устанавливаемых соотношений между входными параметрами компонентов шихты;

 x_i - затраты j-го материала шихты, $j = \overline{1, m}$;

 c_{ij} - массовая часть i -го химического компонента j -го материала;

$$C = \begin{pmatrix} c_{11}...c_{1n} \\ \\ c_{ml}...c_{mn} \end{pmatrix} \text{ - матрица химического состава шихты;}$$

$$i = \overline{1, n}$$
, $j = \overline{1, m}$;

 $g_1(X)$ - возможные варианты соотношений между входными параметрами компонентов шихты;

 $T=(t_1,t_2,...t_p)$ - вектор параметров технологии плавки; $f_k(X,C,T)$ - характеристика процесса плавки (качество чугуна и др.), которая рассчитывается в зависимости от входных параметров ($k=\overline{1,r}$).

В качестве целевой функции $\,z(X)\,$ могут выступать:

1) Затраты кокса (в тонах) на производство 1т чугуна:

$$z(x_1,...x_m) = \frac{x_q}{fe(x_1,...x_m)}$$
 (3)

где $\mathbf{x}_{\mathbf{q}}$ - вес кокса (в тонах), $f_e(x_1,...,x_m)$ - вес чугуна (в тонах), полученного при весах материалов: $x_1,...,x_m$

2) Затраты на шихтовые материалы (грн.):

$$Z(x_1,...x_m) = \sum_{i=1}^{m} v_i x_i$$
 (4)

где v_i - цена 1т і -го материала (грн.).

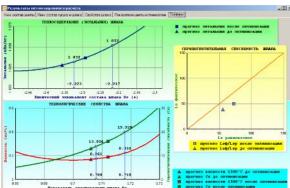
3) Производительность печи (в тонах):

$$z(x_1,...x_m) = -fe(x_1,...x_m)$$
 (5)

где $f_e(x_1,...,x_m)$ - вес чугуна (в тонах), полученного при весах материалов: $x_1,...,x_m$.

4) Решение обратной задачи поиска области решения, обеспечивающей требуемые граничные условия

Сформулированная задача является задачей условной многомерной нелинейной оптимизации. При этом результирующие параметры подсчитываются с помощью определенного алгоритма по входным параметрам. Математически это означает, что в процессе решения задачи используются значения функций, заданных алгоритмически. Для решения подобных задач может быть использован метод нулевого порядка, являющийся методом безусловной оптимизации. Поставленная задача условной оптимизации (1)-(2) была сведена к задаче безусловной оптимизации с помощью метода штрафных функций (методом внешней точки)


[3]. Для минимизации цели использованы методы покоординатного спуска и золотого сечения [4].

Особенностью решения поставленной проблемы является тот факт, что изменения в технологических затратах определенных материалов связаны соотношениями с количеством других материалов (g_1). Например, при изменении в количестве известняка автоматически надо изменить и количество кокса. На некоторых печах устанавливается жесткое правило относительно того, за счет каких материалов могут изменяться другие, а также устанавливается ограничение на массу полачи.

Таким образом, указанная нелинейная многомерная задача условной оптимизации решалась в два этапа: сведение к задачам безусловной многомерной оптимизации, а затем сведением к задачам безусловной одномерной оптимизации. Корректировка загружаемой шихты осуществляется в подсистеме «Оптимизация» путем задания ограничений на ресурсы управления и показатели плавки на основе оптимизационных расчетов с выдачей конкретных рекомендаций по изменению параметров загружаемой шихты или дутьевого режима (рис. 4). В результате выдается рекомендованный программой состав шихты, химический состав чугуна и свойства шлака после оптимизации, формируется видеокадр с графиками изменения технологических свойств шлаков от физико-химических критериев прогнозного состава шлаков (рис.5).

Onrecebance no morre Onrecebance no remonorce				Рекомен	ограничения на параметры				
натериалы				значение	Наимения акие параметра	Иссоний предел	Верхний предел	Committee of	после оптими 1.18
Наиментелине котериоло	Неконей предел	Безнови предел	Текушее эн-же		Ca0/Si02			1.110	
kokc	27	27	27	27.29	ICaO+MgOVSiO2	1.2	-	1.253	1.33
Z KOKCA, %	3.07	3.07	3.072443	3.11				1,233	1.33
ALTOMEDAT LOK I	93	93	93	93	Si чугуна	0.7	1.1	0.870	0.91
ОКАТЫШИ СЕВГОК ФОК 1,2	17	17	17	17	S чугуна	0.02	0.04	0.036	0.028
АНТРАЦИТ	4.3	4.3	4.3	4.3	Физхин. зививалент шлака	-2.323	-2.217	-2.356	-2.292
M3BECTHRK	0	5	0.45	1.88				100000000000000000000000000000000000000	
скрал чаганный	2	2	2	2	Вес чугуна	P		67.050	67,12
шлак об. плата	5	5	5	5	Стехнонетрия шлака	0.712	0.716	0.705	0,712

Puc.4. Задание ограничений на параметры управления и результаты оптимизации шлакового режима

Puc. 5. Прогноз состава чугуна и свойств шлака по скорректированной подаче, установленной в результате оптимизации шлакового режима

Компьютерная система «Шихта» разработана с помощью среды Microsoft Visual Studio 2012 с использованием языка программирования Visual C#.

Выводы

Разработанная компьютерная система «Шихта» обеспечивает технологов инструментальными средст-

вами для выбора оптимального состава доменной шихты с целью получения кондиционного чугуна с минимальными энергетическими и сырьевыми затратами в современных условиях доменной плавки.

Система позволяет выполнить априорную оценку технологической ситуации до загрузки шихты в печь и осуществить корректировку загружаемой подачи на основе оптимизации шлакового режима по комплексу свойств конечного шлака (вязкости, энтальпии и серопоглотительной способности).

Поиск оптимального решения базируется на синтезе методов многомерной и одномерной оптимизации, включающих процедуры методов покоординатного спуска и золотого сечения.

Система «Шихта» своевременно предоставляет технологу информацию, необходимую для принятия решений, направленных на обеспечение оптимального режима ведения доменной плавки, рационального использования сырьевых компонентов, замены одного сырья другой, уменьшению затрат кокса и т.п..

ЛИТЕРАТУРА

- Тогобицкая Д. Н. Алгоритмические и программные средства системы контроля и управления шлаковым режимом доменной плавки / Д. Н. Тогобицкая, А. И. Белькова, А. Ю. Гринько, Д. А. Степаненко // Системные технологии. Региональный сборник научных трудов. Днепропетровск. 2013. Вып. 3 (86). С.9—14.
- Приходько Э. В. Прогнозированние физикохимических свойств оксидних систем / Э. В. Приходько, Д. Н. Тогобицкая, А. Ф. Хамхотько, Д. А. Степаненко. — Днепропетровск : Пороги. — 2013. — 339 с.
- Балашова С. Д. Методы штрафных функций, методические указания. / С. Д. Балашова, Е. М. Киселёва. — Д.: ДНУ. — 1978. — 42 с.
- 4. Химмельблау Д. Прикладное нелинейное программирование / Д. Химмельблау. М. : «Мир». 1975. 534 с.

пост.29.05.14

Расчетно-аналитическая оценка сорбционной способности доменного шлака по отношению к щелочам

Н. А. ЦИВАТАЯ, Д. А. СТЕПАНЕНКО, А. С. СКАЧКО, Н. Е. ХОДОТОВА

Институт чёрной металлургии им. З. И. Некрасова НАН Украины

Изложены результаты решения задачи прогнозирования содержания щелочных оксидов доменном шлаке в зависимости от его состава.

Викладено результати рішення задачі прогнозування вмісту оксидів лугів в доменному шлаку в залежності від його складу.

Set out the results of solving the problem of predicting the content of alkali oxides in the blast furnace slag depending on its composition.

Состояние вопроса. Нерегламентированное поступление щелочных металлов в доменные печи, связанное с использованием в составе доменной шихты вторичных материалов различных металлургических переделов, создает проблему «щелочной агрессии», которая не позволяет оперативно изменять режим доменной плавки во избежание потерь производства и перерасхода кокса.

Оксиды щелочных металлов обладают свойством накапливаться в доменной печи, циркулируя в рабочем пространстве, особенно в диапазоне температур 800-1100°С [1]. Циркулирующие щелочи охлаждаются на поверхности шихтовых материалов, вступая с ними в химическое взаимодействие. Изменение свойств железосодержащих шихтовых материалов под воздействием щелочей оказывает отрицательное влияние на ход доменной плавки. К таким изменениям относятся разрушение, т.е. образование мелочи при высоких температурах, разбухание, преждевременное размягчение и образование тестовидной фазы. Эти изменения могу

проходить в широком диапазоне температур и распространяться на значительные области печи. Следствием этого является расширение температурных диапазонов жидкообразования, изменения соотношения в протяженностях зон существования материалов в твердом, размягченном и капельножидком состоянии. В результате этого заметно отклоняется от рационального распределение газов по сечению печи, возрастает сопротивление его движению (нижний перепад), нарушается теплообмен в зоне формирования расплавов, возрастает колеблемость состава продуктов плавки, снижается ровность хода печи и её экономичность.

Зарубежные и отечественные исследования свидетельствуют, что каждый 1 кг щелочей на тонну чугуна, оставшийся циркулировать в печи, обуславливает перерасход кокса до 33 кг/т [1, 2]. В то же время, каждый выведенный из оборота в печи 1 кг/т чугуна щелочей вызывает экономию кокса до 12 кг/т чугуна.