- Долинский В.М. Расчет нагруженных труб, подверженных коррозии // Химическое и нефтяное машиностроение. – 1967. – №2. – С. 9-10.
- 5. Зеленцов Д.Г., Радуль О.А., Короткая Л.И. Анализ применимости аналитических формул при решении

задач долговечности стержневых корродирующих конструкций// Системные технологии. 2007 - №50. – С. 121-129.

 Кофман А. Введение в теорию нечетких множеств. – Москва: Радио и связь, 1982. – 432 с.

пост. 23.12.2010

К расчету термических напряжений при конвективном нагреве шара

ГОРБУНОВ А.Д.

Днепродзержинский государственный технический университет

Разработана инженерная методика расчета термических напряжений при конвективном нагреве шаровых тел. Ключевые слова: аналитический расчет, нагрев, термическое напряжение, шар.

Розроблено інженерну методику аналітичного розрахунку термічних напружень при конвективному нагріванні кульових тіл.

Ключові слова: аналітичний розрахунок, термічні напруження, нагрівання, куля.

The article represents the developed engineering technique of thermal tension during convective heating of spherical bodies.

Key words: analytical calculations, heating, thermal tension, sphera.

Постановка проблемы и анализ публикаций.

Без знания температурных полей и термических напряжений внутри массивного тела невозможно назначить рациональные энерго- и материалосберегающие тепловые и температурные режимы печей или других агрегатов, связанных с тепловой обработкой материалов, например, сушильных установок, химических реакторов и т. п. При значительных скоростях нагрева в шаре могут возникать термические напряжения, превышающие допустимые для данного материала, приводящие в некоторых случаях даже к разрушению тела.

В работе [1] приведены аналитические решения для расчета относительных термических напряжений в любой точке неограниченной пластины при ее конвективном нагреве в печи с постоянной температурой греющей среды t_c

$$\widetilde{\sigma}(X, \operatorname{Fo}) = \theta_{\operatorname{cp}}(\operatorname{Fo}) - \theta(X, \operatorname{Fo}),$$
 (1)

на поверхности при Х=1

$$\widetilde{\sigma}_n(\mathrm{Fo}) = \theta_{\mathrm{cp}}(\mathrm{Fo}) - \theta_n(\mathrm{Fo}) = \sum_{n=1}^{\infty} D_n(\mu_n) e^{-\mu_n^2 \mathrm{Fo}}$$
 (2)

и в центре пластины при Х=0

$$\widetilde{\sigma}_{\mathrm{II}}(\mathrm{Fo}) = \theta_{\mathrm{cp}}(\mathrm{Fo}) - \theta_{\mathrm{II}}(\mathrm{Fo}) = \sum_{n=1}^{\infty} C_n(\mu_n) e^{-\mu_n^2 \mathrm{Fo}}$$
, (3)

Где $\tilde{\sigma} = \sigma/\sigma_0$ — безразмерные термические напряжения, $0 \le \tilde{\sigma} \le 1$; $\sigma_0 = \beta E \Delta t_0 / (1-\nu)$ — максимально возможные термические напряжения, Па.

Здесь относительные температуры:

в любой точке $X = x/R_0$

$$\theta(X, \operatorname{Fo}) = \sum_{n=1}^{\infty} P_n(\mu_n) \cdot U_n(X) e^{-\mu_n^2 \operatorname{Fo}} , \qquad (4)$$

на поверхности

$$\theta_{\Pi}(Fo) = \sum_{n=1}^{\infty} P_n(\mu_n) \cdot e^{-\mu_n^2 \cdot Fo} , \qquad (5)$$

в центре

$$\theta_{\rm II}({\rm Fo}) = \sum_{n=1}^{\infty} A_n(\mu_n) \cdot e^{-\mu_n^2 \cdot {\rm Fo}}$$
(6)

и среднемассовая

$$\theta_{\rm cp}({\rm Fo}) = \sum_{n=1}^{\infty} M_n(\mu_n) \cdot e^{-\mu_n^2 \cdot {\rm Fo}}, \qquad (7)$$

где θ (Fo) =($t(\tau)-t_c$)/ Δt_0 ; $\Delta t_0 = t_0 - t_c$; t_0 — начальная температура тела, °C; Fo= $a\tau/R_0^2$ - число Фурье; Bi= aR_0/λ – число Био; $P_n(\mu_n) = 2$ Bi/[Bi(Bi+1)+ μ_n^2] – тепловая амплитуда; $A_n(\mu_n) = P_n(\mu_n)/\cos\mu_n$; $M_n(\mu_n) = P_n(\mu_n) \cdot$ Bi/ μ_n^2 ; $C_n(\mu_n) = M_n(\mu_n) - A_n(\mu_n)$; $D_n(\mu_n) = M_n(\mu_n) - P_n(\mu_n)$; $U_n(x) = \cos\mu_n X/\cos\mu_n$; μ_n – собственные числа, определяемые характеристическим уравнением:

$$\operatorname{ctg}\mu_n = \mu_n / \operatorname{Bi} . \tag{8}$$

Решая совместно уравнения (2) и (3), можно получить формулу связи между термонапряжениями в центре и на поверхности

$$\widetilde{\sigma}_{n}(\mathrm{Fo}) = -\varDelta\theta(\mathrm{Fo}) + \widetilde{\sigma}_{\mathrm{II}}(F_{0}), \qquad (9)$$

где относительный перепад температур получается путем вычитания из (5) уравнения (6)

$$\Delta \theta(\mathrm{Fo}) = \theta_{\mathrm{II}} - \theta_{\mathrm{II}} = \sum_{n=1}^{\infty} E_n(\mu_n) \cdot e^{-\mu_n^2 \mathrm{Fo}}$$
(10)

в котором $E_n(\mu_n) = P_n(\mu_n) - A_n(\mu_n)$.

Из анализа уравнений (2), (3), (9) и (10) следует, что динамика изменения напряжений во времени анало-

-**r** - ...

гична изменению температурной разности, т.е. резко возрастают, достигая максимального значения при числах Фурье $Fo_{max}=0,05...0,50$, а затем постепенно падают, т.е. носят колоколообразный характер.

На практике иногда важнее знать не всю динамику изменений напряжений во времени, а только их максимально возможные характерные величины. Целью данной работы является аналитическое определение указанных величин для шаровых тел.

Изложение материалов исследования. Задачу определения термических напряжений в шаре будем решать в предположении такой же их зависимости от температур на поверхности, в центре и среднемассовой как для плоских тел.

Для шаровых тел будут справедливы уравнения (1)...(7), (9), (10) для пластины с заменой координатной функции U(X), входящей в уравнение (4) $U_n(X) =$ $= [\sin(\mu_n X)/\sin\mu_n] \cdot \mu_n/(\mu_n X)$, тепловых амплитуд $P_n(\mu_n) = 2\text{Bi}/[-\text{Bi}B + \mu_n^2]$ для уравнения (5), $A_n(\mu_n) =$ $= P_n(\mu_n) \cdot \mu_n/\sin\mu_n$ — для (6) и $M_n(\mu_n) = 3\text{Bi}/\mu_n^2$ для (7). Теперь μ_n вместо (8) определяется из характеристического уравнения:

$$\operatorname{ctg}\mu_n = B/\mu_n , \qquad (11)$$

Дифференцируя уравнения (2), (3) и (10) по времени, приравнивая производную нулю и используя два члена суммы ряда, получим формулы для расчёта максимальных времен Фурье:

для максимального термического напряжения на поверхности

$$Fo_{M,\Pi} = (1/a) ln(1/b_{\Pi}),$$
 (12)

перепада температур

гле B = 1 - Bi.

$$Fo_{\max} = \frac{1}{a} \ln \frac{1}{b}$$
(13)

и термонапряжения в центре

$$\operatorname{Fo}_{\mathrm{M},\mathrm{II}} = (1/a) \ln(1/b_{\mathrm{II}}), \qquad (14)$$

где
$$a = \mu_2^2 - \mu_1^2$$
; $b_{\pi} = -\delta D_1 / D_2$; $b_{\mu} = -\delta C_1 / C_2$;
 $b = -\delta E_1 / E_2$; $\delta = (\mu_1 / \mu_2)^2$.

Здесь и далее под E_i понимается амплитуда $E_i(\mu_i)$.

Подставляя Fo_{max} из (13) в уравнение (10), получим максимальный перепад температур с учётом двух членов ряда:

$$\Delta \theta_m = E_1 e^{-\mu_1^2 \operatorname{Fo}_{max}} \left(1 + E_2 / E_1 \cdot e^{-a \operatorname{Fo}_{max}} \right) =$$

= $(1 - \delta) E_1(\mu_1) e^{-\mu_1^2 \operatorname{Fo}_{max}}.$ (15)

При выводе (15) было учтено, что согласно уравнению (13) $\exp(-aFo_{max}) = b$.

По аналогии подставляя Fo_{м.п} в уравнение (2), получим максимальное термическое напряжение на поверхности

$$\widetilde{\sigma}_{\rm M,II} = (1 - \delta) D_1 \cdot e^{-\mu_1^2 \rm Fo}_{\rm M,II} \tag{16}$$

и после подстановки (14) в (3) — максимальное напряжение в центре шара

$$\widetilde{\sigma}_{\text{M.II}} = (1 - \delta) C_1 e^{-\mu_1^2 \operatorname{Fo}_{\text{M.II}}} .$$
(17)

Анализ полученных решений. Формулы (12)...(14) однотипны и могут быть описаны одним уравнением

$$\operatorname{Fo}_{m,j} = (1/a) \ln(1/b_j). \tag{18}$$

При j = 1, 3 имеем расчет напряжений на по-

верхности и в центре, а при j = 2 — перепада температур. После определения максимальных времен можно найти соответствующие температуры при этих числах Фурье с учетом двух членов ряда.

Подставляя Fo_{*m.j*} в уравнение (5), получим температуру поверхности

$$\theta_{\mathrm{II},j} = \left(P_1 + b_j P_2\right) \exp\left(-\mu_1^2 \cdot \mathrm{Fo}_{m,j}\right),\tag{19}$$

в (6) — температуру центра

$$\theta_{\mathfrak{u},j} = \left(C_1 + b_j C_2\right) \exp\left(-\mu_1^2 \cdot \operatorname{Fo}_{m,j}\right), \tag{20}$$
 в соотношение (7) — среднемассовую

 $\theta_{\text{cp}.j} = \left(M_1 + b_j M_2\right) \exp\left(-\mu_1^2 \cdot \text{Fo}_{m.j}\right), \quad (21)$ и в (10) перепад температур

$$\Delta \theta_j = \left(E_1 + b_j E_2 \right) \exp\left(-\mu_1^2 \cdot \operatorname{Fo}_{m,j} \right).$$
(22)

Наибольшую и основную трудность при практических расчётах по уравнениям (1)...(22) представляет определение по соотношению (11) бесчисленного множества корней. В работе [2] приведена общая приближенная формула расчета первого корня для тел простой формы

$$\mu_1 = \sqrt{D/\gamma} , \qquad (23)$$

где
$$D = k \operatorname{Bi}/m$$
; $m = 1 + \operatorname{Bi}/(k+2)$ — коэффициент

термической массивности; $\gamma = (1 + \sqrt{1 + 4\rho})/2$; $\rho = D^2/[k(k+2)^2(k+4)]; k$ — коэффициент геометрической формы, равный 1 – для пластины, 2 – цилиндра и 3 – шара. При малых ρ число $\gamma \cong 1 + \rho$.

Для определения приближенных значений остальных корней следует различать два характерных случая нагрева – при больших и малых числах Био [3].

При малых числах Био (Bi < 3)

$$\mu_n = b_n - z_n \,, \tag{24}$$

где $z_n = G_1/\gamma_n$; $G_1 = B/b_n$; $\rho_n = (2 + \text{Bi})B/(3b_n^2)$; $b_n = (2n-1)\pi/2$; n = 1,2,3,...

При больших числах Био (Bi
$$\ge$$
 3)
 $\mu_{r} = a_{r} - G_{2}/\gamma_{r} \approx a_{r}(1 - \beta/\gamma_{r}),$ (25)

где
$$G_2 = \beta a_n$$
; $\rho_2 = G_2^2/3$; γ — см. уравнение (23);
 $a_n = n\pi$; $\beta = 1/\text{Bi}$.

В двух предельных случаях — малые и большие числа Био, полученные решения значительно упрощаются. Предварительно упростим расчет тепловой амплитуды $A(\mu_n)$. Используя тригонометрическое тожде-

ство $1/\sin x = \sqrt{1 + \operatorname{ctg}^2 x}$ и характеристическое уравнение (11), можно записать

$$\mu_n / \sin \mu_n = (-1)^{n+1} \cdot \sqrt{\mu_n^2 + B^2} .$$
 (26)

С учетом последнего выражения тепловая амплитуда, входящая в уравнение (6) определения температуры центра шара, станет

$$A_n(\mu_n) = P_n(\mu_n)(-1)^{n+1}\sqrt{\mu_n^2 + B^2} .$$
 (27)

Теперь получим упрощенные выражения для других амплитуд в двух предельных случаях.

Асимптотика при малых числах Био. Первый корень уравнения (11) вычисляем по соотношению (23) при $\gamma \cong 1$ и m = 1 + Bi/5, а второй — по (24). Тогда отношение собственных чисел

$$\delta = (\mu_1/\mu_2)^2 = D/[\gamma b_2^2 (1-\varepsilon_2)^2] \approx 4\text{Bi} \cdot (1-\text{Bi}/5)/(3\pi^2), (28)$$

rge $\varepsilon_2 = B/(b_2\gamma_2); \ \gamma_2 \approx 1+\rho_2; \ \rho_2 = -(2+\text{Bi}) \cdot B/(3b_2^2).$

Здесь и далее, для оценки погрешности получаемых приближенных решений, имеет смысл привести величины при числе Bi = 1 (B = 0), когда точные значения корней: $\mu_n^{\text{T}}(1) = b_n = (2n-1)\pi/2$. Расчет по уравнению (23) при Bi = 1 первого корня дает $\mu_1(1) \cong 1,5708$ с погрешностью $\Pi_{\mu_1} = 0,06\%$ по сравнению с точным

 $\mu_1^{\mathrm{T}}(1) = \pi/2$. Отношение корней $\delta^{\mathrm{T}}(1) = 1/9$, а расчет по (28) $\delta(1) \cong 0,1121$ с $\Pi_{\delta} = 0,9\%$.

Разность квадратов корней $a = \mu_2^2 - \mu_1^2 = b_2^2 (1 - \varepsilon_2)^2 - D/\gamma \approx 9\pi^2/4$. При этом $a^{\mathrm{T}}(1) = 2\pi^2$.

Первая амплитуда, входящая в уравнение (5) температуры поверхности

$$P_1 = 2/(-B + 3/m\gamma) \approx 1/(m\gamma) \approx 1 - \text{Bi/5}.$$
 (29)

По аналогии вторая $P_2 = 2/(-B + 1/m_2)$ и любая $P_2(\mu) = 2/(-B + 1/m_2)$

$$P_n(\mu_n) = 2/(-B + 1/m_n),$$
 (30)

где $m_n = \text{Bi}/\mu_n^2$ — *n*-ый коэффициент термической массивности.

При
$$\operatorname{Bi} = 1$$
 $P_1^{\mathrm{T}}(1) = 2\operatorname{Bi}/b_1^2 = 8/\pi^2 = 0.81057$ и $P_2^{\mathrm{T}}(1) = P_1^{\mathrm{T}}(1)/9 \cong 0.09$.

Интересно отметить, что в отличие от других амплитуд зависимость P_2 от числа Био носит немонотонный характер, возрастает от нуля до максимального значения $P_{2 max} \cong 0,2$ при числе $\text{Bi} \cong 5$, а затем уменьшается до нуля, оставаясь меньше $P_1(\text{Bi})$.

Введем отношение поверхностных амплитуд

$$\eta = P_2 / P_1 = (-B + \mu_1^2 / \text{Bi})/(-B + 1/m_2) =$$

 $= (\delta - m_2 B)/(1 - m_2 B).$
(31)

При числе $\operatorname{Bi} = 0$ $\eta(0) = \delta(0) = 0$, а при $\operatorname{Bi} = 1$ $\eta^{\mathrm{T}}(1) = \delta^{\mathrm{T}}(1) = 1/9$.

Амплитуда A₁ согласно уравнению (27) и с уче-

том того, что при малых аргументах
$$\sqrt{1+x} \approx 1+x/2$$

$$A_1 = P_1 \sqrt{\mu_1^2 + B^2} \approx 1 + K_A \cdot \text{Bi}$$
, (32)
где $K_A = k/2(k+2) = 3/10$.

(33)

Вторая амплитуда

$$A_2 = -P_2 \sqrt{\mu_2^2 + B^2} \approx -P_2 \mu_2 \left(1 + B^2 / 2\mu_2^2 \right).$$

Значения при Bi = 1: $A_1^{\mathrm{T}}(1) = P_1^{\mathrm{T}}(1) \cdot b_1 = 4/\pi = 1,27323;$ $A_2^{\mathrm{T}}(1) = -P_2^{\mathrm{T}}(1) \cdot b_2 = -A_1^{\mathrm{T}}/3 = -4/3\pi = -0,424413.$ Для среднемассовой температуры:

 $M_1 = P_1 \cdot 3\text{Bi}/\mu_1^2 = P_1 m\gamma \approx (1 - \text{Bi}^2/25) \text{ M} \quad M_2 = 3P_2 \cdot m_2.$ (34)

При
$$\operatorname{Bi}=1$$
: $M_1^{\mathrm{T}}(1)=3P_1^{\mathrm{T}}/b_1^2=96/\pi^2=0.985534$ и
 $M_2^{\mathrm{T}}(1)=M_1^{\mathrm{T}}/81=0.012167$.

Для перепада температур по уравнению (10)

$$E_1 = P_1 - A_1 = P_1 \left(1 - \sqrt{\mu_1^2 + B^2} \right) \approx -\text{Bi} (1 - \text{Bi}/15)/2$$
, (35)
 $E_2 = P_2 \left(1 + \sqrt{\mu_2^2 + B^2} \right)$. При Bi = 1: $E_1^{\text{T}}(1) = P_1^{\text{T}}(1 - b_1) =$
= -0,46267 и $E_2^{\text{T}}(1) = P_2^{\text{T}}(1 + b_2) = 0,514476$.

Для термических напряжений в центре шара по (3)

$$C_{1} = M_{1} - A_{1} = P_{1} \left(3\text{Bi} / \mu_{1}^{2} - \sqrt{\mu_{1}^{2} + B^{2}} \right) \approx P_{1} \left(m\gamma - \mu_{1} \right).$$
(36)
$$C_{2} = M_{2} - A_{2} = P_{2} \left(3m_{2} + \sqrt{\mu_{2}^{2} + B^{2}} \right).$$

При числе Bi = 1: $C_1^{\mathrm{T}}(1) = P_1^{\mathrm{T}}(3/b_1^2 - b_1) = -0,287705$ и $C_2^{\mathrm{T}}(1) = P_2^{\mathrm{T}}(3/b_2^2 + b_2) = 0,436580$.

Для термонапряжений на поверхности

$$D_1 = M_1 - P_1 = P_1 (3Bi/\mu_1^2 - 1) \cong P_1 (m\gamma - 1) \approx P_1 \cdot \text{Bi/5}$$
, (37)

$$D_2 = M_2 - P_2 = P_2(3m_2 - 1).$$

При Ві = 1 : $D_1^{\mathrm{T}}(1) = P_1^{\mathrm{T}}(3/b_1^2 - 1) = 0,17496$ и

 $D_2^{\mathrm{T}}(1) = P_2^{\mathrm{T}}(3/b_2^2 - 1) = -0.077896$.

С целью проверки амплитуды D можно использовать равенство D=C-E .

Выражения для расчета максимальных времен по уравнению (18) также упростятся. Коэффициент поверхности (*j* = 1)

$$b_{\rm fl} = -\delta D_1/D_2 = -\delta (m\gamma - 1)/[\eta(3m_2 - 1)] \approx 3{\rm Bi}/10$$

для перепада температур (j = 2) $b = -\delta E_1/E_2 =$

$$= -\delta/\eta \cdot \left(1 - \sqrt{\mu_1^2 + B^2}\right) / \left(1 + \sqrt{\mu_2^2 + B^2}\right) \approx Bi/10, \quad (38)$$

где отношение $\delta/\eta \cong (1 - m_2 B)/(1 - m\gamma/3) \approx 3/2$ и центра (j = 3)

$$b_{\rm u} = -\delta C_1 / C_2 = \left(\delta \cdot 3\mathrm{Bi}/10\right) / \left[\eta \left(3\mathrm{m}_2 + \sqrt{\mu_2 + B^2}\right)\right] \approx \mathrm{Bi}/8 \ .$$

При числах Bi = 1 коэффициенты:

$$\begin{aligned} & \text{HPM} & \text{HPM} & \text{HPM} \\ & \text{HPM} & \text{HPM} \\ &$$

$$b_{\rm u}^{\rm T}(1) = -(3/b_1^2 - b_1)/(3/b_2^2 + b_2) = 0.073222$$

Результаты расчетов при Bi = 1 максимальных времен Fo_j по формуле (18) и соответствующих этим временам максимальных термических напряжений на поверхности по уравнению (16), $\Delta \theta_m$ по (15) и термонапряжений в центре шара по (17) приведены в табл. 1. Там же представлены данные при Bi = ∞ . Таблица 1. Коэффициенты b_i, максимальные

_		<i>j</i>	m	.п.ц		
	Число Био Bi = 1			Bi=∞		
J	b_j	Fo _{m.j}	$\widetilde{\sigma}_{m.j}$	b_j	Fo _{m.j}	$\widetilde{\sigma}_{m.j}$
1	0,249570	0,070318	0,13075	1	0	0
2	0,099922	0,117057	-0,30809	1/4	0,04682	-0,9449
3	0,073222	0,132440	-0,18445	0,16172	0,06153	-0,5688

Анализ уравнений (18) и (38) позволяет сделать вывод о том, что максимум величин наступает в последовательности j = 1, 2, 3 и с ростом числа Био эти времена уменьшаются.

Для оценки различия максимальных времен составим их разности:

$$\Delta Fo_1 = Fo_{max} - Fo_{M.II} = 0,117 - 0,070 = 0,0467;$$

$$\Delta Fo_2 = Fo_{M.II} - Fo_{max} = 0,129 - 0,117 = 0,0125;$$

$$\Delta Fo_3 = \Delta Fo_1 + \Delta Fo_2 = 0,0467 + 0,0125 = 0,0592$$
. (39)

Из (18) и табл. 1 следует, что с ростом числа Био различия максимальных времен увеличиваются, вплоть до Δ Fo₃ = 0,0615 – см. уравнение (47).

На практике технологов интересует вопрос насколько термические напряжения на поверхности тела больше, чем в его середине. Обозначим их отношение $R = \sigma_{\Pi} / \sigma_{\Pi}$. Наиболее просто *R* можно найти в стадии регулярного режима нагрева (РРН), который наступает при числах Фурье Fo > 0,3 и когда вместо бесконечных сумм в уравнениях (2)...(10) можно ограничиться одним членом ряда. Тогда, деля уравнение (2) на (3) и учитывая упрощенные соотношения (36) и (37), получим

$$R = \widetilde{\sigma}_{\mathrm{II}} / \widetilde{\sigma}_{\mathrm{II}} = D_{\mathrm{I}} / C_{\mathrm{I}} =$$

$$= \left(3\mathrm{Bi} / \mu_{\mathrm{I}}^{2} - 1 \right) / \left(3\mathrm{Bi} / \mu_{\mathrm{I}}^{2} - \sqrt{\mu_{\mathrm{I}}^{2} + B^{2}} \right) \approx \qquad (40)$$

$$\approx 2 / [3(1 + 2\mathrm{Bi}/3)].$$

При числе Bi = 0 R(0) = -2/k = -2/3, а при Bi = 1 $R^{\mathrm{T}}(1) = (3/b_1^2 - 1)/(3/b_1^2 - b_1) = -0.6081$.

Таким образом, в отличие от процесса нагрева плоских тел, когда при k = 1 R(0) = -2, термические напряжения на поверхности тела в 2 раза больше термонапряжений в центре, при нагреве шаровых тел уже напряжения в центральных точках тела в 1,5 раза больше, чем на поверхности.

Асимптотика при больших числах Био. Теперь корни μ_n находим по уравнению (25). Тогда отношение г *(* a ()12 /r (, a

$$\delta = [a_1(1 - \beta/\gamma_1)]^2 / [a_2(1 - \beta/\gamma_2)]^2 \approx (41)$$

$$\approx (1 - 2\beta(1/\gamma_1 - 1/\gamma_2))/4,$$

где $\gamma_1 \cong 1 + \rho_1$; $\gamma_2 \cong 1 + \rho_2$; $\rho_1 = a_1^2 \beta^2 / 3$; $\rho_2 = 4\rho_1$; $a_1 = \pi \; ; \; a_2 = 2\pi \; ; \; a_n = n\pi \; .$

В предельном случае, при Ві =∞ отношение $\delta_{\infty} = \delta(\infty) = 1/4$.

Разность квадратов корней

$$a = \pi^{2} \Big[4(1 - \beta/\gamma_{1})^{2} - (1 - \beta/\gamma_{2})^{2} \Big] \approx 3\pi^{2} \Big[1 - 2\beta (4/\gamma_{1} - 1/\gamma_{2})/3 \Big]$$
(42)
Амплитуды:

$$P_{1} = 2\beta / \Big(1 - \beta + z^{2} \Big) \approx 2\beta \Big(1 + \beta - z^{2} \Big) \approx 2\widetilde{\beta} ;$$

$$P_{2} = 2\beta \Big(1 + \beta - 4z^{2} \Big) \approx 2\widetilde{\beta} \cong P_{1} ,$$
Где $z = \mu_{1} / \text{Bi} = a_{1} (1 - \beta/\gamma_{1})\beta ; \ \widetilde{\beta} = \beta (1 + \beta) .$

$$A_{1} = A_{1,\infty} \cdot (1 + \beta) \sqrt{1 - z^{2}} \approx A_{1,\infty} \cdot (1 + \beta) \Big(1 - z^{2}/2 \Big) ;$$

$$A_{2} = A_{2,\infty} \cdot (1 + \beta) \sqrt{1 - 4z^{2}} \approx A_{2,\infty} \cdot (1 + \beta) \Big(1 - 2z^{2} \Big) ,$$
Где $A_{1,\infty} = 2$ и $A_{2,\infty} = -A_{1,\infty} = -2$ — амплитуды при

 $Bi = \infty$. $M_1 = M_{1\infty}(1+\beta)/(1-\beta/\gamma_1)^2$; $M_2 = M_{2\infty}(1+\beta)/(1-\beta/\gamma_2)^2$,

где
$$M_{1,\infty} = 6/\pi^2 = 0,607927$$
; $M_{2,\infty} = M_{1,\infty}/4$.
 $C_1 = M_1 - A_1$; $C_{1,\infty} = M_{1,\infty} - A_{1,\infty} = 6/\pi^2 - 2 = -1,392073$;
 $C_2 = M_2 - A_2$; $C_{2,\infty} = M_{2,\infty} - A_{2,\infty} = 2,151982$.
 $E_1 = P_1 - A_1$; $E_{1,\infty} = -A_{1,\infty}$;
 $E_2 = 2\widetilde{\beta} - A_{2,\infty}(1+\beta)\sqrt{1-4z^2}$; $E_{2,\infty} = -A_{2,\infty}$.
 $D_1 = M_1 - P_1$; $D_{1,\infty} = M_{1,\infty}$;

$$D_2 = M_2 - P_2; \quad D_{2,\infty} = M_{2,\infty}$$

Теперь коэффициенты для расчета максимальных времен примут вид:

h = -

$$b_{\Pi} = \frac{\delta[M_{1,\infty}(1+\beta)\cdot(1+2\beta/\gamma_1)-2\beta]}{-M_{2,\infty}(1+\beta)\cdot(1+2\beta/\gamma_2)+2\widetilde{\beta}}; \qquad (43)$$

$$\frac{\left\lfloor A_{1,\infty}(1+\beta)\sqrt{1-z^2-2\widetilde{\beta}}\right\rfloor}{A_{2,\infty}(1+\beta)\sqrt{1-4z^2}+2\widetilde{\beta}};$$
(44)

$$b_{\rm II} = \frac{\delta \left[A_{\rm 1,\infty} \sqrt{1 - z^2} - M_{\rm 1,\infty} \cdot (1 + 2\beta/\gamma_1) \right]}{-A_{\rm 2,\infty} \sqrt{1 - 9z^2} + M_{\rm 2,\infty} \cdot (1 + 2\beta/\gamma_2)}; \quad (45)$$

В предельном случае при Bi =
$$\infty$$
:
 $b_{\Pi,\infty} = -\delta_{\infty} D_{1,\infty} / D_{2,\infty} = -M_{1,\infty} / (4M_{2,\infty}) = -1$;
 $b_{\infty} = -\delta_{\infty} A_{1,\infty} / A_{2,\infty} = 1/4$;
 $b_{\Pi,\infty} = -\delta_{\infty} C_{1,\infty} / C_{2,\infty} = 0,161720.$ (46)

Так как $b_{\Pi,\infty} = -1$ лишено физического смысла, следует взять $b_{\Pi,\infty} = |1|$.

Тогда наименьшие максимальные времена согласно (18) при $a_{\infty} = 3\pi^2$ будут:

Fo_{м.п.∞} = 0, Fo_{max.∞} =
$$(1/3\pi^2)$$
ln4 = 0,04682
и Fo_{м.п.∞} = $(1/3\pi^2)$ ln $(1/b_{n.∞})$ = 0,061532. (47)

Подставляя (47) в уравнение (3), получим максимально возможное термическое напряжение в центре шара

$$\widetilde{\sigma}_{\mathrm{M},\mathrm{II},\infty} = (1 - \delta_{\infty}) C_{1,\infty} \cdot exp(-a_1^2 \mathrm{Fo}_{\mathrm{M},\mathrm{II},\infty}) = -0,568824.$$
(48)

Величины $b_{j,\infty}$, вычисленные по уравнению (46), времена Fo_{*j*.∞} согласно (47) и максимальные термические напряжения $\widetilde{\sigma}_{m.j.\infty}$ приведены в табл. 1.

И

времена Fo_i, $\tilde{\sigma}_{M\Pi}$, $\Delta \theta_m$ и $\tilde{\sigma}_{M\Pi}$ при Bi=1 и ∞ .

Термонапряжение на поверхности при времени Fo_{м.ц.∞}

$$\widetilde{\sigma}_{\Pi,\mathrm{M},\infty} = D_{\mathrm{I},\infty} \exp\left(-a_{\mathrm{I}}^{2}\mathrm{Fo}_{\mathrm{M},\mathrm{I},\infty}\right) + D_{2,\infty} \exp\left(-4a_{\mathrm{I}}^{2}\mathrm{Fo}_{\mathrm{M},\mathrm{I},\infty}\right) = 0.344602$$

и отношение напряжений в этот момент времени $R = \sigma_{\Pi} / \sigma_{\Pi} = 0.3446 / (-0.5688) = -0.6058$.

Последняя несколько больше, чем отношение $R_{\infty} = D_{1,\infty}/C_{1,\infty} = 0,6079/1,392 = -0,4367$, которое получено для стадии РРН с учетом одного первого члена ряда.

Следует отметить, что если приближенно считать R = -2/k, то из уравнения (9) будем иметь

$$\widetilde{\sigma}_n = -K_\sigma \cdot \Delta \theta (\text{Fo}), \qquad (49)$$

где $K_{\sigma} = 2/(2+k)$.

Это соотношение при k = 1 и 2 полностью совпадает с формулами Н.Ю. Тайца [4] для максимальных термических напряжений

$$\sigma_{max}(\tau) = K_{\sigma} \beta E \,\Delta t(\tau) / (1 - \nu) \,. \tag{50}$$

Из анализа уравнения (43) вытекает, что коэффициент $b_{\rm n}$ меняет знак по причине изменения знака амплитуды D_2 , изменяющейся от $-8{\rm Bi}/9\pi^2$ при малых числах Био до $D_{2,\infty} = +0,152$. Из условия равенства нулю D_2 можно получить граничное число ${\rm Bi}_{\rm M} = 15$ выше которого имеем случаи нагрева термически «массивного» тела. Таким образом, при числах ${\rm Bi} < {\rm Bi}_{\rm M}$ для определения времени ${\rm Fo}_{\rm M.\Pi}$ можно применять формулу (12) в которой $b_{\rm n}$ определяется по уравнению (43), а при ${\rm Bi} > {\rm Bi}_{\rm M}$ коэффициент $b_{\rm n}$ становится отрицательным и нельзя пользоваться формулой (12). Возникшую ситуацию можно объяснить следующим образом. Формулы (12)...(22) получены с учетом всего двух членов ряда. С ростом числа Био максимальное время ${\rm Fo}_{\rm M.\Pi}$ уменьшается, вплоть до 0 при ${\rm Bi} = \infty$.

При очень малых числах Фурье (Fo < 0,1) расчёт температур по уравнениям (2)...(10) затруднителен изза необходимости учета большого количества членов ряда, ввиду его плохой сходимости. В этом случае для расчёта поверхностной температуры можно использовать формулы, полученные методом операционного исчисления в работе [5]. Объединяя эти формулы в одно уравнение для простых тел, будем иметь:

$$\hat{\theta}_{\Pi}(\text{Fo}) = 1 - H(1 - \varphi(y)),$$
(51)

где H = Bi/G; G = Bi - (k-1)/2; $y = G\sqrt{\text{Fo}} \equiv \text{Ti}$ — модифицированное время, число Тихонова; $\varphi(y) = e^{y^2} \operatorname{erfcy}$; $\operatorname{erfcy} = (1 - \operatorname{erfy})$ — дополнительный интеграл вероятно-

стей; $erfy = p \cdot \int_{0}^{y} e^{-x^2} dx$ — функция ошибок Гаусса;

 $p = 2/\sqrt{\pi}$; k — фактор формы, см. уравнение (23).

Зная температуру поверхности и используя методику [1], можно найти среднемассовую температуру

$$\theta_{\rm cp}({\rm Fo}) = 1 - k \int_{0}^{{\rm Fo}} {\rm Bi} \cdot \theta_{\rm fr}({\rm Fo}) d{\rm Fo} =$$

$$= 1 - k [(1 - H) \cdot {\rm Fo} + H\Phi(y)/G],$$
(52)

ge
$$\Phi(y) = G^2 \int_0^{F_0} \varphi(y) dF_0 = \varphi(y) + py - 1.$$

Г

Сопоставление приближенных зависимостей (51) и (52) с точными решениями (5) и (7) показало, что погрешность уравнения (52) при расчете средней температуры гораздо меньше, чем уравнения (51) для температуры поверхности.

Так, например, в случае нагрева при Bi = 1 формулой (51) можно пользоваться с относительной погрешностью $\delta t_{\rm m} = (t_{\rm m}^{\rm точное} - t_{\rm m}^{\rm прибл}) \cdot 100/t_{\rm m}^{\rm точн}$ менее + 5 % при времени начальной стадии от 0 до Fo_{H,c} = 0,4, а формулой (52) с погрешностью $\delta t_{\rm cp} \leq -5\%$ до момента времени Fo_{H,c} = 0,53.

Знаки перед погрешностями δt означают, что температура поверхности при расчете по уравнению (51) занижена, а средняя температура по (52) — завышена по сравнению с точными значениями. При расчетах процессов охлаждения знаки погрешностей поменяются на обратные.

Решения (51) и (52) можно упростить путем разложения функции $\varphi(y)$ в ряд при малых (y < 1):

$$\varphi(y) = 1 - py + y^2 - \frac{2p}{3}y^3 + \frac{y^4}{2!} \dots$$
(53)

и при больших (*y* >> 1) аргументах:

$$\varphi(y) = \frac{1}{\sqrt{\pi} y} \left[1 - u(1 - 3u(1 - 5u(1 - \ldots))) \right], \quad (54)$$

где
$$u = 1/(2y^2)$$
.

Графическое решение уравнений (51) и (52) приведено на рисунке 1.

Рис. 1. Зависимость функций φ и Φ от времени y

Интересно отметить, что, в отличие от уравнения (5), где температура поверхности зависит от двух величин – числа Био и Фурье, из уравнения (51) следует, что $\theta_{\rm n}$ зависит только от одного параметра — числа Тихонова Ti = $G\sqrt{\rm Fo}$. Вместо семейства кривых (5) на рисунке 1 имеем всего одну линию. Решения, подобные (51), когда исчезает зависимость процесса от какого-

(51), когда исчезает зависимость процесса от какоголибо параметра, принято называть автомодельными. При числах Bi = 1 для шара или 1/2 для цилиндра коэффициент G = 0 и в расчетных соотношениях (51) и (52) следует раскрывать неопределенность типа 0/0. Используя разложение (53) функции $\varphi(y)$ при малых аргументах, из уравнения (51) получим для тем-

пературы на поверхности:

$$\theta_{\rm II}({\rm Fo}) = 1 - p{\rm Bi}_* \sqrt{{\rm Fo}}$$
(55)

и для среднемассовой из (52)

$$\theta_{cp}$$
 (Fo) = 1 - $k \operatorname{Bi}_* \operatorname{Fo} \left(1 - 2 p \operatorname{Bi}_* \sqrt{\operatorname{Fo}} / 3 \right)$, (56)

где $Bi_* = 1$ и k = 3 для шара и $Bi_* = 1/2$ и k = 2 — для длинного цилиндра.

Таким образом, при малых временах процесса (Fo < 0,1) вместо уравнения (5) будет (51), вместо (7) — (52), а температуру в центре тела на начальной стадии нагрева приближенно можно принять $\theta_{II} \cong 1$.

С учетом сказанного уравнение (2) для расчета термических напряжений на поверхности примет вид

$$\widetilde{\sigma}_{\Pi}(\mathrm{Fo}) = H(1 - \varphi(y)) - k[(1 - H)\mathrm{Fo} + H\Phi(y)/G].$$
(57)

При *G* = 0, после раскрытия неопределенности с помощью (53), получим

$$\widetilde{\sigma}_{\rm II}({\rm Fo}) = p {\rm Bi}_* \sqrt{{\rm Fo}} \left(1 + 2k {\rm Bi}_* \sqrt{{\rm Fo}} / 3 \right) - k {\rm Bi}_* {\rm Fo} \,. \tag{58}$$

Дифференцируя уравнение (57) по времени и приравнивая производную нулю с учетом разложений (53) и (54) можно получить формулу, аналогично (12), для расчета времени наступления Fo_{м.п} максимального термического напряжения на поверхности. Ввиду сложности (57) и необходимости в дальнейшем решать трансцендентные уравнения, покажем ход расчета на более простом уравнении (58). Из соотношения $d\tilde{\sigma}_n/d$ Fo = 0 получим квадратное уравнение, решение которого имеет вид:

$$Fo_{M,\Pi} = G_3 / \gamma_3 , \qquad (59)$$

где $G_3 = 1/[k(\pi k - 4\text{Bi}_*)]; \gamma_3 = 1 - \rho_3; \rho_3 = (2k\text{Bi}_* \cdot G_3)^2.$ Расчет для шара при k = 3 и $\text{Bi}_* = 1$ дает

Fo_{M,II} (1) = 0,07104, что хорошо согласуется с ранее полученной по (12) величиной 0,070318 (см. табл. 1).

Иногда требуется определить расположение координаты $X_{\rm H}$ нейтрального слоя в котором термические напряжения меняют знак с $+\tilde{\sigma}$ на $-\tilde{\sigma}$, т.е. в этой точке равны нулю. Наиболее просто это можно сделать в стадии РРН. Тогда согласно уравнению (1) $\theta_{\rm cp}({\rm Fo}) = \theta(X_{\rm H},{\rm Fo})$ или $M_1 = P_1(\sin(\mu_1 X_{\rm H}))/(\mu_1 X_{\rm H}) \times \times \mu_1/\sin\mu_1)$. Разрешая последнее выражение относительно $X_{\rm H}$, получим

$$X_{\rm H} = (1/\mu_1)\sqrt{6(1-S)}$$
, (60)

где $S = m\gamma / \sqrt{\mu_1^2 + B^2}$.

При малых числах Би
о $S\approx\!1\!-3{\rm Bi}/10$. Тогда будем иметь

$$X_{\rm H} = \sqrt{3/5} = 0,7746 \ . \tag{61}$$

При больших числах Био $\,S\approx 0\,$ и

$$X_{\rm H} = \sqrt{6} / \pi = 0,7797 \ . \tag{62}$$

Таким образом, поскольку $X_{\rm H} > 0.5$ нейтральные слои расположены ближе к поверхности, а само $X_{\rm H}$ колеблется в узких пределах — от 0,77 до 0,78.

Следует отметить, что при нагреве абсолютные, т.е. размерные термические напряжения $\sigma = \sigma_0 \cdot \tilde{\sigma}$ поменяют знаки за счет отрицательности σ_0 из-за $\Delta t_0 = (t_0 - t_c) < 0$.

В заключение укажем, что все полученные решения описывают как процесс конвективного нагрева шаровых тел, так и их охлаждение.

Выводы

- Разработана инженерная методика расчета термических напряжений при конвективном нагреве (охлаждении) шаровых тел. Получены простые и эффективные формулы для двух предельных случаев малых и больших чисел Био на начальной и регулярной стадиях нагрева. Сделан акцент на определение максимальных термонапряжений и времени их наступления.
- При нагреве на поверхности шара возникают сжимающие (отрицательные) напряжения, а в середине растягивающие (положительные); в случае процесса охлаждения знаки поменяются.
- 3. Нейтральные слои расположены ближе к поверхности.
- Наибольшее значение по абсолютной величине имеют напряжения в середине, которые примерно в 1,5 раза превышают термонапряжения на поверхности шара.

ЛИТЕРАТУРА

- Горбунов А.Д. К расчёту термических напряжений при конвективном нагреве пластины // Математичне моделювання. – Днепродзержинск: 2010. № 1(22). – С. 16–21.
- Гольдфарб Э.М., Горбунов А.Д. Определение корней трансцендентных уравнений при нагреве тел в прямотоке и противотоке // ИФЖ. 1984. Т.46. № 5. С. 870–871.
- Горбунов А.Д., Гольдфарб Э. М. Нахождение корней трансцендентных уравнений в задачах теплопроводности шара при неоднородных граничных условиях // Изв. вузов. Черная металлургия. 1984. № 2. С. 79–83.
- 4. Тайц Н.Ю. Технология нагрева стали. М.: Металлургиздат, 1950. – 151 с.
- 5. Лыков А.В. Теория теплопроводности. М.: Высш. школа, 1967. 600 с.

пост. 23.12.10