Влияние определяющих факторов в процессах гомогенизации эмульсионных сред

КЛИМОВ Р.А.

Днепродзержинский государственный технический университет

В статье описывается влияние различных факторов на процесс дробления крупных капель дисперсной фазы эмульсии. Приводятся регрессионные уравнения для расчета критического расстояния между каплями, при котором динамическое воздействие со стороны мелкой капли может привести к дроблению крупной частицы, а также для расчета времени протекания данного процесса.

В статті описується вплив різних чинників на процес подрібнення крупних крапель дисперсної фази емульсії. Приводяться регресійні рівняння для розрахунку критичної відстані між краплями, при якій динамічна дія з боку дрібної краплі може привести до дроблення крупної частки, а також для розрахунку часу протікання даного процесу.

In the article the influence of different factors on the process of crushing large drops of dispersion phase emulsion is described. Regressive equalizations for the calculation of critical distance between drops, at which dynamic influence from the side of shallow drop can result in crushing of large particle, are brought over, and also for timing flow line of the given process.

Введение. Процессы эмульгирования, диспергирования и гомогенизации являются одними из самых энергоемких процессов в промышленности, что связано со значительным перерасходом теплоты и энергии, необходимых для дробления дисперсной фазы. Для создания дисперсных систем наибольшее распространение получил метод механического дробления. Основным направлением снижения затрат энергии является использование принципа дискретно-импульсного ввода энергии [1]. Возможным является использование динамических эффектов при закипании капель малых размеров для дробления более крупных капель. Проведем исследование процессов разрушения границы раздела фаз (масло-пар) и последующего измельчения дисперсной фазы эмульсии при силовом взаимодействии двух закипающих капель, при различных начальных радиусах, расстояниях между поверхностями капель, начальных температурах (соответствующих давлениях) и различных значениях коэффициента межфазного натяжения.

Постановка задачи. Изучить влияние различных факторов на процесс дробления дисперсной фазы эмульсии при ее закипании.

Материалы и результаты исследований. Проведенные по моделям [2, 3] расчеты для двух капель дисперсной фазы, находящихся на различных расстояниях друг от друга и при различных начальных радиусах большей из капель приведены на рисунках 1, 2.

На данных рисунках представлены зависимости времени до дробления капли от относительного радиуса соседней капли и различных расстояниях между поверхностями данных капель при начальной температуре системы t = 130 °C и соответствующем давлении насыщения, при мгновенном сбросе давления до атмосферного. Из данных рисунков видно, что с ростом начального радиуса большой капли R_1 происходит увеличение расстояния между каплями, при котором еще возможно дробление капель. Также увеличивается относительный радиус малой капли, т.е. с увеличением радиуса большой капли для существования процесса дробления необходимым является наличие закипающей соседней капли по размеру мало отличающейся от большой и, как следует из рисунка 2, $R_2 \approx 0.92R_1$ для данной начальной температуры. Время до момента дробления в целом с увеличением радиуса R_1 , также увеличивается, что можно объяснить как более медленным процессом роста паровой фазы в динамическом отношении, так и увеличением возможного расстояния h.

Рис. 1. Зависимость времени до дробления капли от относительного радиуса соседней капли и расстояния между поверхностями данных капель h: 1-15 мкм; 2 – 20 мкм; 3 – 40 мкм; 4 – 50 мкм; $R_1 = 100$ мкм, t = 130 °C

Анализируя рисунок 1, можно говорить о том, что при определенных межповерхностных расстояниях для заданного промежутка значений относительного радиуса второй капли, возможно практически мгновенное разрушение большой частицы. С увеличением данного расстояния диапазон значений относительного радиуса капель, при котором возможно мгновенное дробление большой капли, уменьшается, а после определенного значения h видна практически линейная зависимость между временем до разрушения и относительным радиусом капель при постоянном значении h. Из рисунка 2 следует, что для данного начального радиуса R_1 при определенном значении параметра R_2/R_1 возможно также и дробление более мелкой капли (кривая τ_2), что указывает на неоднозначность в рассмотрении процессов дробления (может дробиться как большая, так и более мелкая капля). Это объясняется тем, что, процессы ускорения-замедления для капель с различными начальными радиусами протекают при разных периодах и амплитудах изменений.

Рис. 2. Зависимость $\tau = f(R_2/R_1,h)$ при h: 1-20 мкм; 2 – 40 мкм; 3 – 60 мкм; 4 – 100 мкм; 5 – 150 мкм; $R_1 = 200$ мкм, t = 130 °C

Рис. 3. Зависимость времени до момента встречи поверхностей капель (кривая 1) и выбранного критического времени для расчета (кривая 2) от относительного радиуса соседней капли и расстояния между поверхностями данных капель *h*. Исходные значения из рис. 1.

В некоторый момент времени происходит существенный перепад в значениях ускорения либо скорости, действующих на поверхности какой-либо из капель, и в результате, даже более мелкая капля может быть раздроблена большой каплей.

На рисунках 1, 2 видно, что для определенных значений h и R_2/R_1 происходит резкое увеличение времени до дробления частицы. Данное расчетное значение времени соответствует тому периоду, при котором две капли соприкасаются своими поверхностями друг с другом, что следует из кривой 1 рисунка 2. Для некоторых значений h и R_2/R_1 разрушение большой капли будет происходить при практически полном соприкосновении капель, а для других значений такого эффекта наблюдаться не будет. Это указывает на то, что с большей вероятностью дробление капель будет происходить не в момент их соприкосновения, а в момент времени, определенный под критической кривой 2 (рисунок 3) или на данной кривой. Эта кривая исключает вероятностные процессы дробления при соприкосновении капель, а оставляет лишь однозначно происходящие дробления какой-либо из двух капель. Из рисунков 1, 2 следует, что для каждого рассматриваемого случая существуют определенные критические значения h_{cr} и соответствующее ему τ_{cr} , которые находятся на кривой $\tau_{cr} = f(R_2/R_1)$ (кривая 2, рисунок 3) и определяют возможность дробления капель.

Величину h_{cr} удобно представить в относительном виде $\vartheta_{cr} = h_{cr}/R_1$. Для исследования зависимостей ϑ_{cr} ($y_1 = \vartheta_{cr}$)и τ_{cr} ($y_2 = \tau_{cr}$) при различных значениях начального радиуса большой капли R_1 , относительного радиуса малой капли $\delta = R_2/R_1$, начальной температуры системы t_0 и значения коэффициента межфазного натяжения σ , применим ортогональный центральный композиционный план типа 2^n (n = 4) [4]. Для этого плана модель имеет вид

$$y(a, x) = a_0 + a_1 x_1 + \dots + a_n x_n + a_{n+1} x_1^2 + \dots + a_{2n} x_n^2 + a_{2n+1} x_1 x_2 + \dots + a_k x_{n-1} x_n.$$
(1)

Уровни варьирования факторов представлены в таблице 1, а матрица планирования в таблице 2.

Таблица 1. Уровни варьирования факторов

Фак- торы	Код	-1.414	-1	0	+1	+1,414
<i>R</i> ₁ , мкм	<i>x</i> ₁	17.2	100	300	500	582.8
R_2/R_1	<i>x</i> ₂	0.076	0.2	0.5	0.8	0.924
<i>t</i> , °C	<i>x</i> ₃	109.7	120	145	170.0	180.4
σ, мН/м	<i>x</i> ₄	9.65	20	45	70	80.35

Для величины $\mathcal{9}_{cr}$ получена модель процесса в виде

$$\begin{split} & \mathcal{G}_{cr}(x) = 1.973 - 0.047 x_1 + 0.563 x_2 + 2.156 x_3 - \\ & -0.921 x_4 - 0.18 x_1^2 + 0.018 x_2^2 + 0.884 x_3^2 + \\ & +0.657 x_4^2 - 0.147 x_1 x_2 - 0.677 x_1 x_3 - 0.261 x_1 x_4 + \\ & +0.639 x_2 x_3 - 0.219 x_2 x_4 - 0.416 x_3 x_4 \\ & \text{re} \qquad x_1 = \frac{R_1 - 300}{200}, \qquad x_2 = \frac{\delta - 0.5}{0.3}, \qquad x_3 = \frac{t - 145}{25}, \end{split}$$

где

$$x_4 = \frac{\sigma - 0.045}{0.025}$$

Таблица 2. Матрица планирования и результаты расчетов в кодированных величинах

N		<i>V</i> 1	<i>y</i> ₂ ,			
11	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	21	мкс
1	-1	-1	-1	-1	0.878	2.012
2	+1	-1	-1	-1	2.378	10.15
3	-1	+1	-1	-1	0.823	3.131
4	+1	+1	-1	-1	2.522	50.65
5	-1	-1	+1	-1	5.61	352.0
6	+1	-1	+1	-1	4.928	60.8
7	-1	+1	+1	-1	9.24	651.0
8	+1	+1	+1	-1	7.566	394.6
9	-1	-1	-1	+1	0.576	44.96
10	+1	-1	-1	+1	1.208	17.56
11	-1	+1	-1	+1	0.42	12.15
12	+1	+1	-1	+1	0.766	10.59
13	-1	-1	+1	+1	4.16	338.0
14	+1	-1	+1	+1	2.644	40.5
15	-1	+1	+1	+1	6.52	640.1
16	+1	+1	+1	+1	3.732	314.1
17	-1.414	0	0	0	0.985	32.86
18	+1.414	0	0	0	2.079	7.91
19	0	-1.414	0	0	1.203	6.41
20	0	+1.414	0	0	2.653	654.0
21	0	0	-1.414	0	0.73	8.31
22	0	0	+1.414	0	6.59	726.0
23	0	0	0	-1.414	4.80	4.44
24	0	0	0	+1.414	1.613	31.02
25	0	0	0	0	2.293	63.2

Оценка дисперсии ошибок расчета вычисляется с помощью остаточной суммы квадратов

$$S_R = \sum_{j=1}^{N} \left(\hat{y}_j - y_j \right)^2 , \qquad (3)$$

с числом степеней свободы

$$\varphi_1 = N - k - 1 \; , \qquad$$

по формуле

$$s_R^2 = \frac{S_R}{\varphi_1},\tag{5}$$

(4)

где \hat{y}_j - результаты, полученные по уравнению (2) для N = 1,2...25; y_i - результаты по таблице 2; k = 14.

Остаточная сумма квадратов для величины 9_{сг} по полученной модели составляет S_R = 1.985 при числе степеней свободы $\varphi_1 = 10$. Проверка значимости коэффициентов производилась по «порогам» значимости для различных эффектов факторов $h_m s$, где $h_m = t_{cr} \sqrt{c_m}$

(m = 1, 2, 3) [4], t_{cr} – критическое значение распределения Стьюдента при заданном уровне значимости и числе степеней свободы.

При этом коэффициент *a_i* в модели считается значимым, если выполняется условие

$$|a_i| > h_m \cdot s . \tag{6}$$

Для проверки значимости коэффициентов используем в качестве оценки s² дисперсии ошибок остаточную дисперсию $s^2 = s_R^2 = 0.1985$. При n = 4, v = 1и уровне значимости $1 - P = \alpha = 0.05$ из [4] имеем: $h_1 = 0.498$, $h_2 = 0.788$, $h_3 = 0.557$. Сравнение произведения sh1 с абсолютными значениями оценок коэффициентов при линейных членах, sh2 - с оценками коэффициентов при квадратах факторов и sh₃ - с оценками при парных взаимодействиях, показывает, что условие (6) не выполняется для коэффициентов при следующих функциях: $x_1, x_1^2, x_2^2, x_1x_2, x_2x_4$. Исключая эти функции из уравнения (2), получим

$$\begin{aligned} \mathcal{G}_{cr}(x) &= 1.844 + 0.563x_2 + 2.156x_3 - 0.921x_4 + \\ &+ 0.884x_3^2 + 0.657x_4^2 - 0.677x_1x_3 - 0.261x_1x_4 + \\ &+ 0.639x_2x_3 - 0.416x_3x_4. \end{aligned} \tag{7}$$

В данном уравнении все оставшиеся коэффициенты (кроме a_0) совпадают с их значениями в уравнении (2). Этот факт – результат ортогональности плана. Оценка а₀ связана с оценками коэффициентов при квадратах переменных.

Для проверки адекватности модели используем критерий Фишера

$$F = \frac{S_R/\varphi_1}{S_e/\varphi_2} < F_{cr} . \tag{8}$$

При этом оценка дисперсии ошибок наблюдений вычисляется с помощью суммы квадратов ошибок

$$S_e = \sum_{i=1}^{\nu} (y_{i0} - \hat{y})^2 , \qquad (9)$$

с числом степеней свободы $\varphi_2 = N(v-1) \, .$

Для оценки дисперсии ошибок опытов, вызванных погрешностями в определении размеров частиц и коэффициента межфазного натяжения, были проведены четыре повторных опыта в центральной точке данного плана. После вычислений получено S_e = 0.179 для числа степеней свободы $\varphi_2 = 3$. Тогда по уравнению (8) критерий Фишера равен F = 3.326. Критическое значение критерия Фишера для $\alpha = 0.05, \varphi_1 = 10, \varphi_2 = 3$, имеет значение $F_{cr} = 8.79$ [4]. Так как $F < F_{cr}$, то по критерию Фишера модель адекватна истинной зависимости.

Для величины $\tau_{cr}\,$ получена модель процесса в виде

$$\tau_{cr}(x) = (14.05 - 5.9x_1 + 10.63x_2 + 18.27x_3 - 0.34x_4 - 6.97x_1^2 + 8.52x_2^2 + 10.37x_3^2 - 0.7.1x_4^2 + 0.45x_1x_2 - 7.49x_1x_3 - 1.003x_1x_4 + 7.54x_2x_3 - 0.87x_2x_4 - 0.91x_3x_4) \cdot 10^{-5}$$
(11)

Остаточная сумма квадратов для величины τ_{cr} по полученной модели составляет $S_R = 1.24 \cdot 10^{-7}$ при расчета равна $s^2 = 1.24 \cdot 10^{-8}$. После проверки коэффициентов на значимость и исключения незначимых факторов или их эффектов получена следующая модель зависимости

$$\tau_{cr}(x) = (8.477 - 5.9x_1 + 10.63x_2 + + 18.27x_3 + 8.52x_2^2 + 10.37x_3^2 - 7.1x_4^2 - .$$
(12)
$$-7.49x_1x_3 + 7.54x_2x_3) \cdot 10^{-5}$$

После проведения четырех повторных опытов в центральной точке данного плана и вычислений получено $S_e = 7.6 \cdot 10^{-9}$ для числа степеней свободы $\varphi_2 = 3$. Тогда по уравнению (8) критерий Фишера равен F = 4.89. Критическое значение критерия Фишера для $\alpha = 0.05, \varphi_1 = 10, \varphi_2 = 3$, имеет значение $F_{cr} = 8.79$ [4]. Так как $F < F_{cr}$, то по критерию Фишера модель адекватна истинной зависимости.

Анализируя полученные уравнения (7) и (12) видно, что наибольшее влияние на $\vartheta_{cr}(x)$ и $\tau_{cr}(x)$ оказывает фактор x₃ (наибольшие значения коэффициентов при данном факторе). При этом данный фактор носит более сложный характер, чем параболический, т.к. сильно взаимодействует с x_1, x_2, x_4 для зависимости $\mathcal{G}_{cr} = f(x)$ и с x_1, x_2 для $\tau_{cr} = f(x)$. С увеличением температуры t системы возможное расстояние между каплями, при котором еще возможно дробление, возрастает что объясняется наличием больших линамических сил, возникающих при резком сбросе давления до атмосферного, в системе двух закипающих капель, вследствие чего увеличивается и расстояние действия данных сил. С увеличением температуры также увеличивается и τ_{cr} , что является следствием соответствующего увеличения межпузырькового расстояния.

Вторым по влиянию на $\mathcal{P}_{cr}(x)$ является фактор x_4 , который также носит сложный характер влияния из-за своего взаимодействия с другими факторами. Для $\tau_{cr}(x)$ этот фактор носит параболический характер. С увеличением коэффициента межфазного натяжения σ величина критического расстояния $\mathcal{P}_{cr}(x)$ снижается, что вызвано фактом увеличения необходимой силы, приводящей к дроблению капли, т.е. увеличивается энергетический порог, при преодолении которого возможно дробление. Понятно, что данный порог будет с наибольшей вероятностью преодолен при меньших расстояниях между закипающими каплями. С увеличением σ критическое время $\tau_{cr}(x)$ уменьшается, что вызвано соответствующим уменьшением $\mathcal{P}_{cr}(x)$.

Фактор x_1 (радиус R_1) наиболее значим лишь для критического времени, а для критического межпузырькового расстояния он проявляется только при взаимодействии с температурой и коэффициентом межфазного натяжения. С увеличением начального радиуса большой капли величина $\mathcal{G}_{cr}(x)$ также увеличивается. Это вызвано тем, что более крупная капля может быть разрушена при действии меньшего динамического эффекта в соответствии с критериями Бонда и Вебера [1], как следствие источник данного динамического воздействия может быть расположен на большем расстоянии от дробимой капли. Критическое время для наибольшего промежутка исследуемых температур с увеличением R_1 уменьшается по линейному закону, что объяснимо относительной «легкостью» в разрушении больших капель, даже если источник динамического воздействия расположен на относительно большом расстоянии.

Соотношение радиусов капель (фактор x_2) наибольшее влияние имеет на $\tau_{cr}(x)$, и для обоих функций изменения ($\tau_{cr}(x)$, $\vartheta_{cr}(x)$) проявляет сильное взаимодействие с температурой. В целом же при увеличении δ для большинства значений исследуемых температур величина критического расстояния увеличивается, что объяснимо большей окрестностью действия сил от капель большого размера (для радиуса R_2), чем от малых капель, а, значит, более крупные капли (имеющие радиус меньший, чем R_1) могут располагаться на большем расстоянии от капли с радиусом R_1 .

Выводы

Таким образом, основным фактором, определяющим дробление дисперсных капель эмульсии, является температура, которая в наибольшей степени определяет затраты энергии на процессы дробления. Вторым фактором является коэффициент межфазного натяжения, значение которого можно варьировать, добавляя соответствующие ПАВ. Размеры частиц дисперсной фазы после производственной зоны имеют определенное значение, поэтому основными параметрами регулирования процесса дробления частиц являются начальная температура системы и соответствующее ей давление насыщения легкокипящей фазы до момента сброса давления до атмосферного, а также коэффициент межфазного натяжения. Определение оптимальных значений t и σ , позволит рационально использовать энергию в процессах диспергирования и гомогенизации эмульсий.

ЛИТЕРАТУРА

- Долинский А.А., Басок Б.И. Дискретно импульсная трансформация энергии в адиабатно вскипающем потоке. // Пром. теплотехника. – 2001. – Т. 23. – №4-5. – С. 5 – 20.
- Павленко А.М., Климов Р.А., Басок Б.И. Кинетика испарения в процессах гомогенизации // Пром. теплотехника. – 2006. – Т. 28. – №6. – С. 14 – 20.
- Долинский А.А., Павленко А.М., Басок Б.И. Теплофизические процессы в эмульсиях. - Киев, Наукова думка, 2005. – 265 с.
- К. Хартман, Э. Лецкий Планирование эксперимента в исследовании технологических процессов. – М.: Мир, 1977. – 552 с.