Математическая модель процесса затвердевания слитка при плазменном обогреве прибыльной части

РЫЖОВ А.Ф.¹, ГОРБУНОВ А.Д.¹, НЕКЛЕСА А.Т.²

¹Днепродзержинский государственный технический университет ²Закрытое акционерное общество «Плазматекс»

Представлена двухмерная математическая модель процесса затвердевания слитка в изложнице с учетом кривизны. Рассмотрено влияние концентрированных потоков энергии на формирование усадочной раковины при затвердевании слитка. Ключевые слова: слиток, затвердевание, усадочная раковина, плазменный нагрев.

Представлена двомірна математична модель процессу затвердівання зливка у виливниці з врахуванням кривизни. Розлянутий вплив концентрованих потоків енергії на формування усадкової раковини при затвердіванні зливка. Ключові слова: зливок, затвердівання, усадкова раковина, плазмовий нагрів.

The two-dimensional mathematical model of ingot solidification in the mould is represented. The influence of concentrated energy flows on sinkhole forming during ingot solidification is considered. Keywords: ingot, solidification, sinkhole, plasma heating.

Введение. Одним из перспективных направлений применения плазмы в металлургической технологии является использование ее для влияния на жидкий металл в процессе его кристаллизации в изложнице с целью уменьшения усадочной раковины слитка.

В настоящее время разработан ряд методов численного решения на ЭВМ задач затвердевания слитков [1...4]. Однако практически отсутствуют математические модели, которые учитывают влияние на затвердевающий слиток концентрированных потоков энергии.

Разработке математической модели и исследованию теплового состояния слитка при низкотемпературном плазменном обогреве его головной части и посвящена данная статья.

Постановка задачи. Температурное поле в вертикальном сечении плоского или цилиндрического слитка (рис.1) описывается дифференциальным уравнением теплопроводности:

Рис. 1. К постановке задачи: 1- слиток; 2 – изложница; 3 – плита; 4 – утеплитель; 5 – усадочная раковина; 6 – краска; 7 – зазор; 8 –плазменный поток; 9 – плазмотрон.

© Рыжов А.Ф., Горбунов А.Д., Неклеса А.Т., 2010

$$C_{v}^{(l)}(T^{(l)})\frac{\partial T^{(l)}}{\partial \tau} = \frac{\partial}{\partial z} \left[\lambda(T^{(l)})\frac{\partial T^{(l)}}{\partial z} \right] + \frac{1}{r^{k}}\frac{\partial}{\partial z} \left[r^{k}\lambda(T^{(l)})\frac{\partial T^{(l)}}{\partial r} \right].$$
 (1)

Начальное условие:

$$T^{(l)}(z,r,0) = T_0^{(l)} .$$
(2)
Условие на внешних поверхностях:

$$-\lambda^{(l)} \frac{\partial T^{(l)}}{\partial n} = -\lambda^{(l)} \left[\frac{\partial T^{(l)}}{\partial z} \cos \alpha + \frac{\partial T^{(l)}}{\partial r} \cos \beta \right] =$$

$$= q^{l-c},$$
(3)

где $T^{(l)}(z,r,\tau)$ – текущая температура, К; τ – время процесса, с; l=1...4 (l=1 – слиток, l=2 – изложница, l=3 – угеплитель, l=4 – плита); $C_v^{(l)}$ – удельная объемная теплоемкость, Дж/м³К; $\lambda^{(l)}$ – коэффициент теплопроводности, Вт/мК; k – фактор геометрической формы тела (k = 0 для горизонтального сечения прямоугольного слитка, k = 1 для цилиндрического слитка при вертикальном разрезе); α – угол между нормалью n и осью 0z; β – угол между нормалью n и осью 0r; q^{1-c} - удельный тепловой поток передаваемый с поверхности l-го тела в окружающую среду, BT/M_2^2 .

В уравнении (1) под $C_v^{(1)}$ понимается эффективная теплоемкость, которая учитывает выделение скрытой теплоты затвердевания L в интервале температур ликвидус T_l - солидус T_s , [3]:

$$C_{\nu}^{(l)} = \begin{cases} C_T, & T < T_s; \\ C_{\partial.\phi.}, & T_s \le T \le T_l; \\ C_{\omega,\nu}, & T > T_l, \end{cases}$$
(4)

где C_T , $C_{\partial.\phi.}$, C_{*} – теплоемкости металла в твердом, двухфазном и жидком состоянии;

$$C_{\partial.3} = C_T + m(T - T_s)^{m-1} \left(\frac{\rho L + \frac{(C_{\mathcal{H}} - C_T) \Delta T_{kp}}{2}}{\Delta T_{kp}^m} \right)$$

Мат. Мод. № 1 (22), 2010

 $m \ge 1$ – эмпирический коэффициент аппроксимации темпа кристаллизации, который зависит от содержания углерода в слитке: $\Delta T_{kp} = T_l - T_s$; ρ -плотность $\kappa z/_{M^3}$.

Свободная конвекция в жидкой фазе слитка учитывается соответствующим увеличением коэффициента теплопроводности жидкого металла [5]:

$$\lambda^{(1)} = \lambda^{(1)}_{\mathfrak{K}} \varepsilon \ (\Delta T_{\mathfrak{K}\mathfrak{p}})$$
 (5)

Удельный тепловой поток от *l*-го тела в окружающую среду

$$q^{1-c} = (\alpha_{\pi} + \alpha_{\kappa})(T_{\Pi}^{(1)} - T_{C})$$
, Вт/м², (6)
где α_{π} и α_{κ} – коэффициенты теплоотдачи излучением

и конвекцией, BT/m^2K ; $T_{II}^{(1)}$ – температура поверхности тела, K; T_C – температура окружающей среды, К.

При взаимодействии плазменной струи 8 (рис. 1) с поверхностью слитка тепловой поток принимается нормально распределенным вдоль радиуса, т.е.

$$q^{8-1} = q_0 \exp(-kr^2)$$
 (7)

где q_0 – тепловой поток на оси слитка, Вт/м²; k – коэффициент сосредоточенности, $1/m^2$.

Условия сопряжения тепловых потоков в плоскости контакта слитка и изложницы в предположении линейного распределения температуры в газовом зазоре

$$-\lambda^{(1)}\frac{\partial T^{(1)}}{\partial n} = -\lambda^{(2)}\frac{\partial T^{(2)}}{\partial n} = \frac{1}{R_t}(T_{\Pi}^{(1)} - T_{\Pi}^{(2)}) , \quad (8)$$

где R_t – термическое сопротивление передачи теплоты

через газовый зазор $R_t = \left(\frac{\delta_3}{\lambda_3} + \frac{1}{\alpha_3}\right); \quad \delta_3$ – толщина газового зазора, м; λ_3 – теплопроводность газового зазора $\frac{BT}{M \cdot K}$.

Коэффициент теплообмена излучением в газовом зазоре

$$\alpha_{3} = \frac{\varepsilon_{np}\sigma_{0} \left[\left(\frac{T_{\Pi}^{(1)}}{100} \right)^{4} - \left(\frac{T_{\Pi}^{(2)}}{100} \right)^{4} \right]}{T_{\Pi}^{(1)} - T_{\Pi}^{(2)}}, BT_{M}^{2}K, \quad (9)$$

где $\sigma_0 = 5,67 \text{ Вт/м}^2 \text{K}^4$ – постоянная Стефана-Больцмана;

$$\varepsilon_{\rm пр}$$
 – приведенная степень черноты $\varepsilon_{\rm пр} = \left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1\right)^{-1};$

 $\varepsilon_1, \ \varepsilon_2$ – степень черноты поверхности слитка и изложницы.

Для расчета усадки металла при его затвердевании в изложнице принята формула Нехендзи-Гиршовича [5]:

$$\frac{V}{V_0} = \beta_{\mathcal{H}_c} (\overline{T}_{\mathcal{H}} - \overline{T}_{\mathcal{I}}^{(1)}) + \varepsilon_c + \beta_m (T_s - \overline{T}_{\mathcal{I}}^{(1)}), \quad (10)$$

где $\beta_{\rm ж}$ и $\beta_{\rm T}$ – средние объемные коэффициенты усадки металла в жидком и твердом состоянии, 1/К; $\varepsilon_{\rm c}$ – усадка стали при переходе из жидкого в твердое состояние; $\overline{\rm T}_{\rm ж}$ и $\overline{\rm T}_{\rm 3}^{(1)}$ – средние по объему температуры жидкого и затвердевшего металла, К; V_0 - первоначальный объем жидкого металла.

Система уравнений (1...10) представляет собой

математическую постановку задачи.

Решение задачи. Поскольку слиток, изложница и прибыльная надставка имеют криволинейные границы, для решения задачи использован метод выпрямления границ с последующим применением метода конечных разностей. Сущность метода выпрямления границ заключается в том, что переход от криволинейной области к прямоугольной осуществляется путем следующей замены радиальной переменной [4]:

$$y = r\varphi_l(z) + F_l(z), \qquad (11)$$

где
$$\varphi_1(z) = \frac{1}{f_1(z)};$$
 $F_1(z) = 0$ - для слитка;

$$F_2(z) = -f_1(z)\varphi_2(z); \varphi_2(z) = \frac{1}{\left[f_2(z) - f_1(z)\right]}$$
 — для из-

ложницы; $f_1(z)$ и $f_2(z)$ – расстояние от оси симметрии (r = 0) к внешней боковой поверхности слитка и изложницы.

Для конусообразных тел:

$$f(z) = R_0 + \gamma z$$
, где $\gamma = \frac{\Delta R}{H} = tg\beta$ – конусность тела.

С учетом подстановки (11) дифференциальное уравнение теплопроводности в новых переменных примет следующий вид (индекс "*l*" опущен):

$$C_{v}(T)\frac{\partial T(z,y,\tau)}{\partial \tau} = \Lambda_{z}(T) + \Lambda_{zy}(T) + \Lambda_{y}(T), \quad (12)$$

Λ

$$\Lambda_{z}(T) = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right);$$

$$\Lambda_{zy}(T) = P_{1} \left[\frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial z} \right) \right];$$

$$_{y}(T) = (\varphi^{2}(z) + P_{1}^{2}) \cdot \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \lambda \left(P_{11} + \frac{k\varphi^{2}(z)}{y - F(z)} \right) \frac{\partial T}{\partial y},$$

где $\Lambda_{z}(T)$, $\Lambda_{zy}(T)$, $\Lambda_{y}(T)$ – осевой, смешанный и радиальный дифференционные операторы;

$$P_{1} = \frac{\partial y}{\partial z} = \frac{y - F(z)}{\varphi(z)} \varphi'(z) + F'(z);$$

$$P_{11} = \frac{\partial^{2} y}{\partial z^{2}} = \frac{y - F(z)}{\varphi(z)} \varphi''(z) + F''(z).$$

Производная температуры по нормали, которая входит в уравнения (3) и (8) преобразуется к виду:

$$\frac{\partial T}{\partial n} = \sin\beta \frac{\partial T}{\partial z} + (\varphi(z)\cos\beta + P_1\sin\beta)\frac{\partial T}{\partial y}.$$
 (13)

При численном решении задачи теплопроводности в новых переменных использованы прямоугольные сетки Δz_i , Δy_i и неявная конечноразностная схема с применением экономичного локально-одномерного метода [6].

Соответственно математической модели и разработанному алгоритму была осуществлена машинная реализация расчета полей температур в слитке, изложнице, плите и утеплителе для двухмерной задачи алгоритмическим языком Фортран-77.

По разработанной математической модели проведены исследования процесса затвердевания слитка массой 7,4т (ст 3.сп.) металлургического завода им. Петровского. Геометрические размеры слитка и изложницы (рис. 1) $H_1=0,5_M; H_2=2,540_M; H_3=2,205_M; H_4=0,020_M;$ $H_5=0,460_M; R_1=0,444_M; R_2=0,565_M; R_3=0,470_M;$ $R_4=0,287_M; R_5=0.119_M; R_6=0,407_M; R_7=0,308_M.$

Исходные данные для расчета приведены в таблице 1. Плазменный обогрев прибыльной части слитка осуществлялся через паузу $\tau_n = 10$ мин после окончания разливки металла и продолжался на протяжении $\tau_p = 30$ мин при тепловой мощности плазмотрона M = 50 кВт.

Тепловой поток, передаваемый через верхнюю торцевую поверхность слитка при плазменном нагреве, принят нормально распределенным вдоль радиуса в соответствии с (7).

График изменения максимальной глубины усадочной раковины (по вертикальной оси слитка) при плазменном обогреве прибыльной части слитка приведен на рисунке 2.

Рис. 2. Изменение максимальной высоты раковины в процессе затвердевания слитка массой 7,4 т при плазменном утеплении

Кривые, представленные на графике, получены для разных случаев распределения теплового потока, проходящего через нагреваемую поверхность слитка, обусловленными следующими значениями коэффициента сосредоточенности k = 0; 6,47; 12,94. При этом плотность теплового потока по вертикальной оси слитка q соответственно составляла 0,154 MBT/m²; 1,0 MBT/m²; 2,0 MBT/m².

Как вытекает из представленных зависимостей, значительный рост усадочной раковины наблюдается в начале процесса охлаждения (на протяжении 10...15 мин. после окончания разливки), что обусловлено динамикой затвердевания объема металла. После включения плазмотрона происходит постепенное снижение скорости образования усадочной раковины, которое продолжается до завершения затвердевания основной части (тела) слитка. При дальнейшем охлаждении она снова возрастает в связи с увеличением скорости кристаллизации металла в прибыльной части.

Следует отметить, что приведенные на графике кривые изменения максимальной глубины усадочной ра-

ковины в процессе охлаждения металла от разливки до окончания затвердевания тела слитка для всех рассмотренных случаев практически совпадают. Отличие наблюдается лишь на завершающей стадии затвердевания прибыльной части слитка. Причем усадочная раковина имеет наименьшую глубину при равномерно-распределенном тепловом потоке вдоль поверхности нагрева.

Таблица 1. Исходные данные для расчета затвердевания слитка в изложнице

Наименование	Значение
Температура заливаемого металла, T_{x} , ${}^{0}C$	1600
Температурный интервал кристаллизации	
$T_L - T_S$, ⁰ C	1516-1484
Скрытая теплота кристаллизации L, кДж/кг Свойства жидкой стали: - коэффициент теплопроводности	272
$\lambda_{\mathbf{x}}, \frac{BT}{M \cdot K}$	30
- объемная теплоемкость $C_{\pi}, \frac{\mathcal{I}_{\pi}}{M^3} \cdot K$	4,96 · 10 ⁶
- плотность ρ , $\kappa r / M^3$	7000
Свойства твердой фазы слитка:	
- коэффициент теплопроводности $\lambda_{\rm T}, \frac{{\rm BT}}{{\rm M}\cdot{\rm K}}$	30
- объемная теплоемкость $C_T, \frac{Д_{\#}}{M^3 \cdot K}$	5,26 · 10 ⁶
- плотность $\rho, \frac{\kappa \Gamma}{M^3}$	7500
Свойства чугунной изложницы:	
- коэффициент теплопроводности $\lambda_{\mu}, BT/_{M}, K$	35
- объемная теплоемкость $C_{\mu}, \frac{Д_{\#}}{M^3 \cdot K}$	5,0 · 10 ⁶
- плотность $\rho, \frac{\kappa r}{M^3}$	7200
Теплопроводность газового зазора	
$\lambda_3, BT_{M \cdot K}$	0,01
Температура изложницы перед заливкой	
металла Т _и , ⁰ С	50

Итак, сконцентрированный вдоль вертикальной оси слитка тепловой поток (k = 6,7; 12,9;) в сравнении с равномерно-распределенным (k = 0) приводит к увеличению глубины усадочной раковины, что необходимо учитывать при проектировании плазмотрона.

На рис 3 приведены зависимости, которые характеризуют изменение максимальной глубины усадочной раковины в процессе затвердения слитка в изложнице при обычной, применяемой на заводе технологии утепления прибыльной части (кривая 1) и для двух режимов охлаждения с использованием плазменного обогрева прибыли. В первом случае (кривая 2) плазменный обогрев начинается через $\tau_n = 10$ мин. после окончания разливки металла и продолжается на протяжении

 $\tau_p = 30$ мин. Во втором (кривая 3) – плазмотрон включается через $\tau_n = 2$ мин. после окончания разливания и работает на протяжении $\tau_n = 30$ мин.

Рис. 3. Изменение глубины раковины при обычном и плазменном) утеплении головной части слитка в процессе затвердевания

Проведенные на заводе им. Петровского экспериментальные исследования плазменного обогрева прибыльной части слитка массой 7,4 т при его затвердевании в изложнице позволили установить значительное уменьшение глубины усадочной раковины по сравнению с обычной, применяемой на заводе технологией утепления прибыльной части.

Максимальная глубина усадочной раковины при работе плазмотрона мощностью 50 кВт на протяжении 30 мин составила 0,22м. При этом плазменный обогрев начинался через 10 мин после разливки.

Найденная опытным путем максимальная глубина усадочной раковины достаточно хорошо согласуется с данными, полученными математическим моделированием.

Применение плазменного обогрева прибыльной части слитка в процессе его затвердения в изложнице позволяет значительно уменьшить глубину усадочной раковины: в первом случае с 0,325 м до 0,21 м, т.е. на 35 %, во втором – на 43 %.

Увеличение продолжительности затвердения металла на 0,4 ч при плазменном обогреве происходит за счет повышенного теплосодержания прибыльной части слитка. Однако, продолжительность затвердения основной части (тела) слитка в обеих вариантах практически одинакова.

С целью выбора рационального режима плазменной обработки прибыльной части слитков массой 7,4 т была проведена серия расчетов процессов затвердевания металла при разных значениях тепловой мощности плазмотрона и продолжительности его работы.

Данные расчетов представлены на номограмме (рис. 4), по которой можно определить глубину усадочной раковины при разных режимах плазменной обработки головной части слитка. По ней можно также найти удлинение продолжительности полного затвердения прибыльной части слитка в сравнении с продолжительностью затвердения слитка, который охлаждается в изложнице без использования плазменного обогрева.

Рис. 4. Номограмма для выбора рационального режима плазменной обработки затвердевающих слитков масой 7,4т

Выводы

Разработана математическая модель для расчета теплового состояния слитка в процессе его затвердения при влиянии низкотемпературной плазмы на его головную часть. Поскольку слиток, изложница и прибыльная надставка имеют криволинейные границы, для решения задачи использован метод выпрямления границ с последующим применением метода конечных различностей. Адекватность математической модели реальным процессам производства установлена путем сопоставления данных расчета с экспериментальными исследованиями, проведенными в условиях завода им. Петровского.

На ЭВМ проведено математическое моделирование процесса затвердения слитка массой 7,4 т при плазменном нагреве его головной части.

Результаты проведенных исследований показали, что применение плазменной обработки прибыльной части затвердевающего слитка позволяет уменьшить глубину усадочной раковины на 30-40 %.

В результате исследования установлено:

 с увеличением продолжительности работы плазмотрона и сокращением паузы от конца разливки до его включения, глубина усадочной раковины в слитке уменьшается;

- сконцентрированный вдоль вертикальной оси слитка тепловой поток в сравнении с равномернораспределенным вдоль радиуса приводит к увеличению глубины усадочной раковины, что необходимо учитывать при проектировании плазмотрона.

Данные расчетов приведены на графиках, по которым можно определить глубину усадочной раковины при разных значениях мощности плазмотрона и продолжительности его работы.

Представленные результаты исследований можно использовать для выбора рационального режима плазменной обработки прибыльной части слитков в процессе их затвердения с целью сокращения величины обрези металла вследствие усадочных явлений.