Математическое моделирование формирования рафинирующего синтетического шлака на установке ковш – печь переменного тока

В.П.ПИПТЮК., В.Ю.БОЛОТОВ, И.А.ПАВЛЮЧЕНКОВ, <u>В.А.ВИХЛЕВЩУК</u>, В.Г.КНОХИН, И.Н.ЛОГОЗИНСКИЙ

> Институт чёрной металлургии НАН Украины¹, Днепродзержинский государственный технический университет², ОАО «Днепроспецсталь»³

Приведено дополнение разработанной математической модели гидродинамики и тепло-, массообмена ковшевой ванны установки ковш – печь переменного тока, касающееся формирования рафинирующего синтетического шлака из ТШС разного состава.

Приведено доповнення розробленої математичної моделі гідродинаміки і тепло-, масообміну ковшової ванни установки ківш – піч змінного струму, що стосується формування рафінуючого синтетичного шлаку з ТШС різного складу.

Addition of the developed mathematical model of hydrodynamics is resulted and heat-, masstransfer of scoop bath of setting scoop – stove alternating current, touching forming of refining synthetic slag from TSS of different composition.

В настоящее время повышаются требования к качеству металлопродукции, поэтому возрастает роль технологических приемов и средств, обеспечивающих производство чистых сталей и металлопроката с высокими эксплуатационными показателями. К их числу относится установка печь-ковш (УПК), способствующая получению чистой по вредным примесям стали.

В статье приведено дополнение разработанной трёхмерной математической модели гидродинамики и тепло-, массообмена наполненной ковшевой ванны при обработке металлического расплава на установке ковшпечь переменного тока [1, 2], описывающее процесс формирования рафиинирующего синтетического шлака из ТШС систем CaO - CaF₂ и CaO - Al₂O₃ на УКП.

При определении закономерностей формирования синтетического шлака электродугой переменного тока над турбулентной металлической ванной рассматривали задачу проникновения кусков ТШС разного химического и гранулометрического состава в шлакометаллический расплав (ШМР) в сталеразливочном ковше и их дальнейшего расплавления.

Ввод куска ТШС в сталеразливочный ковш состоит из двух этапов: движение по желобу и свободное падение до встречи с поверхностью ШМР; проникновение куска в расплав (удар и переход через поверхность ШМР). Проникновение куска через поверхность ШМР приводит к уменьшению его скорости.

Полагаем, что кусок падает вертикально вниз на поверхность ШМР. Скорость его у поверхности ШМР вычисляется по формуле:

$$\vartheta'_0 = \vartheta' + \sqrt{2g(h' + H - h_0)}, \qquad (1)$$

где ϑ' - скорость куска на выходе из желоба, h' - расстояние от желоба до верхнего уровня металла в ковше; h₀ - уровень наполнения ковша; H - максимальный верхний уровень металла в ковше.

Согласно данным [3 - 7] скорость ввода куска в расплав после удара о зеркало металла определяется следующим образом:

$$\vartheta_0 = \frac{m_0 \vartheta'_0}{m_0 + km_0^*},$$
 (2)

© В.П. Пиптюк, В.Ю. Болотов, И.А. Павлюченков, В.А. Вихлевщук, В.Г. Кнохин, И.Н. Логозинский, 2006

где k=0.5 - коэффициент присоединенной массы; m_0 - начальная масса куска; m_0^{\ast} - масса расплава, вытесненная куском в начальный момент времени $\tau=0$.

Движение куска в расплаве описывается уравнением вида:

$$m(\tau)\frac{d\Theta(\tau)}{d\tau} = \vec{F}_{P} + \vec{F}_{A} + \vec{F}_{D} + \vec{F}_{B}, \qquad (3)$$

где $\vec{\vartheta}(\tau)$ - скорость движения куска; $\vec{F}_{p} = m\vec{g}$ - вес куска; $m(\tau)$ - масса куска в момент времени; $\vec{F}_{A} = -m^{*}(\tau)\vec{g}$ - выталкивающая сила; $\vec{F}_{D} = -km^{*}(\tau)\frac{d\vec{V}}{d\tau}$ - сила, обусловленная движением куска в жидкости; $\vec{F}_{B} = -C_{f} \cdot S(\tau) \cdot \frac{\rho_{p}(\tau)}{2} |\vec{\vartheta} - \vec{V}| \cdot (\vec{\vartheta} - \vec{V})$ - сила сопротивления куска; $\vec{\vartheta} - \vec{V}$ - скорость движения куска относительно расплава; C_{f} - коэффициент сопротивления куска; $S(\tau)$ - площадь миделева сечения куска; \vec{V} - скорость расплава; $m^{*}(\tau)$ - масса расплава, вытесненная куском в момент времени τ ; $\rho_{p}(\tau)$ - плотность расплава;

При условии, что кусок имеет сферическую форму, коэффициент сопротивления C_f вычисляется следующим образом:

$$C_f = a_R / Re^m , \qquad (4)$$

где $\text{Re} = 9 \cdot d(\tau)/\nu'$ - критерий Рейнольдса; $d(\tau)$ диаметр сферы; ν' - кинематический коэффициент вязкости расплава, $a_{\text{R}} = 24$, m = 1 при Re < 1.92; $a_{\text{R}} = 18.5$, m = 0.5 при $1.92 \le \text{Re} \le 500$; $a_{\text{R}} = 0.44$, m = 0 при Re > 500.

С учетом вышеприведенных данных, уравнение (3) примет вид:

$$\left[m(\tau) + km^{*}(\tau)\right] \cdot \frac{d\vec{\vartheta}(\tau)}{d\tau} = \left[m(\tau) - m^{*}(\tau)\right] \cdot \vec{g} -$$

Мат. мод. № 1,2 (15), 2006

$$-C_{f} \cdot S(\tau) \cdot \frac{\rho_{p}(\tau)}{2} \left| \vec{\vartheta} - \vec{V} \right| \cdot \left(\vec{\vartheta} - \vec{V} \right).$$
 (5)

Во время движения куска в расплаве происходит намерзание на нём оболочки расплава и шлака, последующий нагрев и плавление металлической и шлаковой оболочек и расплавление куска.

Полагаем, что изменения формы куска не происходит, будет изменяться только диаметр сферы, а значит и его плотность по формуле:

$$\rho^{*}(\tau) = \frac{4}{3} \frac{\pi}{W_{k}} \Big[\rho_{T}(t) z_{T}^{3}(\tau) + \rho_{*}(t) (z_{0} - z_{T}(\tau))^{3} + \rho(t) (z_{T}(\tau) - z_{0})^{3} \Big], \quad (6)$$

где $W_k = \frac{4}{3}\pi z^3(\tau)$ - реальный объем куска; z_0 -

начальный радиус куска в начальный момент времени $\tau = 0$; $\rho_{\rm T}(t)$ - плотность твердой фазы куска; $\rho_{\rm m}(t)$ - плотность жидкой фазы куска; $\rho(t)$ - плотность твердой стали, шлаковой или стальной оболочек, $z_{\rm T}(\tau)$ - текущий радиус куска в момент времени τ .

С учетом вышеприведенных обозначений, уравнение движения (3) примет вид:

$$\frac{\mathrm{d}\Theta(\tau)}{\mathrm{d}\tau} = \vec{g} \frac{\rho^{*}(\tau) - \rho_{p}(t)}{\rho^{*}(\tau) + k \cdot \rho_{p}(t)} - \frac{3}{4} \frac{C_{f} \cdot \rho_{p}(t) \left| \vec{\Theta} - \vec{V} \right|}{\mathrm{d}(\tau) \left| \rho^{*}(\tau) + k \cdot \rho_{p}(t) \right| \left| \vec{\Theta} - \vec{V} \right|}, \tag{7}$$

которое можно представить в виде системы дифференциальных уравнений:

$$\begin{cases} \frac{d\Theta_{r}}{d\tau} = -\frac{3}{4} \frac{C_{f} \cdot \rho_{p}(t)(\Theta_{r} - V_{r})}{d(\tau) \left[\rho^{*}(\tau) + k \cdot \rho_{p}(t)\right]} \sqrt{(\Theta_{r} - V_{r})^{2} + (\Theta_{z} - V_{z})^{2}} \\ \frac{d\Theta_{z}}{d\tau} = g \frac{\rho^{*}(\tau) - \rho_{p}(t)}{\rho^{*}(\tau) + k \cdot \rho_{p}(t)} - \frac{3}{4} \frac{C_{f} \cdot \rho_{p}(t)(\Theta_{z} - V_{z})}{d(\tau) \left[\rho^{*}(\tau) + k \cdot \rho_{p}(t)\right]} \sqrt{(\Theta_{r} - V_{r})^{2} + (\Theta_{z} - V_{z})^{2}} \\ \frac{dr}{d\tau} = \Theta_{r}; \frac{dz}{d\tau} = \Theta_{z} \end{cases}$$
(8)

где $\vartheta_r; \vartheta_z; V_r; V_z$ - составляющие скорости куска ТШС и жидкой стали по координатам г и z.

Ниже представлены результаты численных исследований закономерностей формирования рафинирующих синтетических шлаков при вводе кусковых ТШС указанных систем на УКП при продувке диспергированным аргоном (расход 100 л/мин). В расчетах рассмотрено влияние разного фракционного состава (5, 25 и 50 мм) вышеуказанных кусковых ТШС базовых содержаний (80% CaO и 20% CaF₂ – для системы CaO-CaF₂; 70% CaO и 30% Al₂O₃ - для системы CaO-Al₂O₃), температуры расплава (1550-1650⁰C), а также изменения соотношений компонентов вышеуказанных систем в пределах ± 10 % мас. (каждого) от базовых их содержаний.

В связи с тем, что в качестве рационального места расположения донной продувочной фурмы ранее [2] обоснован оптимальный вариант, все нижеприведенные численные исследования проведены применительно к указанному варианту расположения фурмы.

На рисунке 1 и в таблице 1 представлены полученные значения продолжительности формирования рафинирующих синтетических шлаков на УКП при вводе кусковых ТШС в сталеразливочный ковш с продувкой металлического расплава аргоном через асимметрично расположенную донную фурму.

Из представленных результатов следует, что формирование синтетических шлаков на основе CaO- СаF₂ происходит примерно в 1,5-2,0 раза быстрее, чем шлаков на основе CaO-Al₂O₃.

Рис. 1. Продолжительность формирования рафинирующего синтетического шлака из ТШС систем CaO-CaF₂ (1-3) и CaO-Al₂O₃ (4-6): 1- базовый состав (CaO - CaF₂); 2- CaO 90 %, CaF₂ 10 %; 3 - CaO 70 %; CaF₂ 30 %; 4 - базовый состав (CaO - Al₂O₃); 5 - CaO 80 %; Al₂O₃ 20 %; 6 - CaO 60 %; Al₂O₃ 40 %.

Таблица 1. Результаты моделирования продолжительности формирования рафинирующих синтетических шлаков из ТШС на установке печь-ковш

Темпера-	Продолжительность формирования шлака,с								
тура рас-	CaO-CaF ₂								
плава, °С	C	остав 1	*)	Состав 2 *)					
	1**)	$2^{**)}$	3 ^{**)}	1**)	$2^{**)}$	3**)			
1550	29	392	1049	32	453	1198			
1570	11	150	430	13	160	485			
1590	8	95	277	10	107	311			
1610	7	68	200	8	77	224			
1630	6	52	152	7	58	170			
1650	5	40	118	6	45	132			
	(CaO-CaF	⁷ 2	CaO-Al ₂ O ₃					
	Состав 3 *)			Состав 4 *)					
	1**)	2**)	3**)	1**)	2**)	3**)			
1550	18	344	940	50	672	1798			
1570	11	134	390	19	257	737			
1590	7	86	252	14	163	475			
1610	6	62	182	12	117	343			
1630	5	47	138	10	89	261			
1650	4	36	107	9	69	202			
	CaO-Al ₂ O ₃								
	Состав 5 *)		Состав 6 *)						
	1**)	$2^{**)}$	3**)	1**)	$2^{**)}$	3**)			
1550	55	777	2054	31	590	1611			
1570	22	274	831	19	230	669			
1590	17	183	533	12	147	432			
1610	14	132	384	10	106	312			
1630	12	99	291	9	81	237			
1650	10	77	226	7	62	183			
Примечания: ^{*)} Состав 1 - СаО – 80% и СаЕ ₂ – 20%: Состав 2 -									

римечания: ¹ Состав 1 - СаО – 80% и Са F_2 – 20%; Состав 2 - СаО – 90% и Са F_2 – 10%; Состав 3 - СаО – 70% и Са F_2 – 10%; Состав 3 - СаО – 70% и Са F_2 – 30%; Состав 4 – СаО - 70% и Аl₂O₃ – 30%; Состав 5 – СаО – 80% и Al₂O₃ – 20%; Состав 6 - СаО – 60% и Al₂O₃ – 40%. ^{**1} Кусок размеров (в поперечнике) – 1 – 5 мм; 2

– 25 мм; 3 – 50 мм.

Существенное влияние на продолжительность формирования синтетических шлаков оказывает температура металлического расплава. С увеличением температуры расплава в интервале 1550-1650 $^{\circ}$ С продолжительность формирования синтетического шлака из ТШС на основе CaO-CaF₂ сокращается в 4,5-6,0 раз (для кусков размером 25 и 50 мм) и в 9,0-10,0 раз (для кусков размером 25 и 50 мм). Для синтетического шлака из ТШС на основе CaO-Al₂O₃ увеличение температуры расплава в указанных пределах сокращает длительность их формирования аналогично этой характеристике для шлаков на основе CaO-CaF₂, что объясняется ускорением процесса диффузии при повышении температуры расплава.

Более значительное, по сравнению с температурой расплава, влияние на продолжительность формирования синтетических шлаков, независимо от состава, оказывает фракция кусков вводимых ТШС. Увеличение размера вводимых кусков ТШС с 5 до 50 мм в рассматриваемом интервале температур расплава повышает продолжительность формирования синтетических шлаков базовых составов в 22,0-36,0 раз (независимо от вида рассматриваемых ТШС).

Численными исследованиями определено, что использование кусков ТШС фракцией свыше 50 мм (размер в поперечнике) в идентичных условиях нецелесообразно, в связи со значительным увеличением продолжительности этапа формирования синтетических шлаков (в 55 раз и более – для кусков фракцией 60 мм). В то же время применение мелких фракцией ТШС (0–5 мм), как известно, технологически и экономически неоправданно. Определено также, что увеличение в составе ТШС доли CaF₂ (для системы CaO-CaF₂) или Al₂O₃ (для системы CaO-Al₂O₃) на 10 % мас. от их базовых содержаний способствует незначительному (в 1,1-1,6 раза) сокращению продолжительности формирования рафинирующих синтетических шлаков указанных систем. В то же время установлено некоторое (в 1,1-1,2 раза) повышение продолжительности формирования синтетических шлаков, независимо от вида ТШС, при увеличении в сравнение с базовым содержанием доли CaO на 10 % мас.

Как свидетельствуют результаты расчетов, применительно к исследованной стали марки 17Г1С (с учетом принятой минимально необходимой температуры расплава перед вводом кусковых ТШС на УКП – 1570 ^оС) при донной продувке ШМР диспергированным аргоном с расходом 100 л/мин, продолжительность формирования рафинирующего синтетического шлака на УКП будет соответствовать данным, приведенным в табл. 2.

Таблица 2. Продолжительность формирования синтетического рафинирующего шлака базового состава

Состав ТШС	CaO-CaF ₂			CaO- Al ₂ O ₃		
Фракция куска, мм		25	50	5	25	50
Продолжительность формирования шлака, с	11	150	430	19	257	737

Как отмечалось выше, разработанная модель не учитывает вероятного растрескивания кусков извести в составе ТШС, из-за чего реальная продолжительность формирования рафинирующего синтетического шлака указанных составов должна быть несколько короче расчетных значений. Несмотря на это, результаты численных исследований, в целом, соответствуют продолжительности этапа формирования синтетического рафиинирующего шлака из ТШС при обработке низколегированных марок стали на УКП фирмы "Даниэли", эксплуатируемой в ЭСПЦ–3 ОАО "Днепроспецсталь".

Выводы. Представлено дополнение трёхмерной математической модели гидродинамики и тепло-, массообмена ковшевой ванны УКП переменного тока, описывающее формирование синтетического рафинирующего шлака из ТШС разного состава. Приведенные результаты использованы для исследования процесса шлакообразования на УКП переменного тока из ТШС рассмотренных систем.

ЛИТЕРАТУРА

- Математическое моделирование гидродинамики шлакометаллической ковшевой ванны на установке ковш-печь переменного тока / В.А.Вихлевщук, В.П.Пиптюк, В.Ю.Болотов, И.А.Павлюченков и др. // Математичне моделювання. Науковий журнал ДДТУ. - 2005. - №1 (13). - С. 53-58.
- Математическое моделирование процессов тепло-, массообмена при обработке металлического расплава на УКП переменного тока / В.П.Пиптюк, В.Ю.Болотов, И.А.Павлюченков и др. // Математич-

пост. 22.09.06.