витрата дуття ±10 м ³ /хв.;
витрата технологічного кисню ±50 м ³ /год.;
витрата (природного газу) ± 50 м ³ /год.;
концентрація кисню в технологічнім кисні ± 0,90% ;
вологість дугтя $\pm 1,5 \text{г/ м}^3$;
маса рудної частини шихти в подачі ±50 кг;
маса вапняку в подачі± 18 кг;
винос колошникового пилу на подачу ± 50 кг;
вміст заліза в рудній частини шихти ±0, 10 %;
вміст золи в коксі± 1,0 %;
час сходу <i>n</i> подач шихти± 10 с ;
кількість подач за годину±0,02;
вміст <i>СО</i> в колошниковому газі±0,017 %.
T

Така ж точність інформації необхідна для реалізації АСК ТП доменної плавки, за винятком складу колошникового газу - для нього допустима похибка ±0,05% абс.

Отже, для реалізації даної моделі необхідні високоточні засоби автоматичного контролю складу колошникового газу. Оптико - акустичні газоаналізатори не забезпечують такої точності. На погляд авторів розробки [3], необхідну точність аналізу складу колошникового газу може забезпечити мас-спектрометричний комплекс «Гранат» Санкт-Петербургського ЗАО «ЦФТИ» Аналітик». При цьому повинна бути впевненість в достовірності інформації про склад колошникового газу, оскільки в протилежному випадку контролювати цю інформацію за моделлю не має сенсу.

ЛІТЕРАТУРА

- Довгалюк Б.П. АСУ ТП доменної печі Дніпродзержинськ: ДДТУ, 1998.- 170 с.
- Довгалюк Б.П. Інформаційне забезпечення АСУ ТП доменної печі.// Вісник Технологічного університету Поділля. Науковий журнал.-Хмельницький, 2002.- том 1.-С. 91-95.
- Косолап Н.В., Михайлец С.М. Теория и практика производства чугуна, Труды междунар. науч.-техн. конф., посвященной 70-летию КГГМК.- Кривой Рог, 2004.- С.518-521.

пост. 25.05.06

Усовершенствование математической модели температурного режима шиберных устройств

И.И. ЖУЛЬКОВСКАЯ, А.П. ОГУРЦОВ, О.А. ЖУЛЬКОВСКИЙ

Днепродзержинский государственный технический университет

Усовершенствована математическая модель температурного режима ковшового шиберного затвора. Расчетная область условно разделена на две части: плиты в корпусе (трехмерная сетка, декартовы координаты) и стакан-коллектор (двумерная сетка, цилиндрические координаты), между которыми задаются условия сопряжения температурных полей. Для решения нелинейной задачи теплопроводности методом прогонки применен локально-одномерный подход. Для расчета радиационного теплообмена применен резольвентно-зональный метод.

Удосконалено математичну модель температурного режиму ковшового шиберного затвору. Розрахункова область умовно розділена на дві складові: плити у корпусі (трьохвимірна сітка, декартові координати) і стакан-колектор (двохвимірна сітка, циліндричні координати), між якими завдаються умови сполуки температурних полів. Для вирішення нелінійної задачі теплопровідності методом прогонки застосовано локально-одновимірний підхід. Для розрахунку радіаційного теплообміну застосовано резольвентно-зональний метод.

The mathematical model of temperature regime of gate surface has been improved. Calculating area is conditionally divided into two parts: plates in a frame (three-dimensional grade, decart coordinates) and a glass-collector (two-dimensional grade, cylindrical coordinates) between which the conductions of temperature fields conjugation are defined. Local one-dimensional approach has been used for decision of non-linear task of heat conduction by threading die method. Resolvent-zone method has been applied for calculating of rational heat exchange.

Эффективность сталеплавильного производства во многом определяется проведением его заключительного этапа – разливки стали. Практически на всех ведущих металлургических предприятиях при разливке металла применяются бесстопорные устройства шиберного типа. В настоящее время весьма актуальной становится задача модернизации устаревших шиберных затворов и, особенно, на предприятиях бывшего СССР [1, 2]. Проведение подобного рода исследований предпочтительнее осуществлять на тепловых математических моделях разрабатываемых и модернизируемых устройств [2].

В работах [3, 4] разработана математическая модель температурного состояния ковшового шиберного затвора, позволяющая оценить пространственное температурное поле огнеупорных плит и окаймляющего их стального корпуса устройства при различных способах разливки стали (в изложницы сверху и сифоном, а также непрерывным способом). Предложенная математическая модель не рассматривает стакан-коллектор – неотъемлемую часть устройства. В то же время, в работе [5] предложена математическая модель температурного режима стаканаколлектора шиберного затвора при указанных выше способах разливки металла, в которой не рассматривается тепловая задача для огнеупорных плит устройства.

В указанных выше моделях на границе сопряжения плит и коллектора задавались граничные условия II рода – теплоизоляция.

В настоящей работе рассматриваемые ранее обособленные математические модели объединены в единую модель, где расчетная область условно разделена на две части: плиты в корпусе (трехмерная сетка, декартовы координаты) и стакан-коллектор (двумерная сетка, цилиндрические координаты), между которыми задаются условия сопряжения температурных полей (рис.1).

При постановке задачи сделаны следующие допущения.

Рис. 1. Схема шиберного затвора и выбранная система координат: 1 – плиты в кожухе; 2 – стакан-коллектор

Процесс разливки условно разделен на два периода: собственно разливка и закрытое состояние затвора. Продолжительность каждого из указанных периодов, а также количество этих циклов определяется способом разливки и технологической инструкцией.

Принято, что металлический гарнисаж на поверхности затвора отсутствует, экранирование, а также принудительное охлаждение конструкции не применяется, и на протяжении всего процесса разливки на наружной поверхности устройства имеет место сложный радиационно-конвективный теплообмен. В сталеразливочном канале при открытом затворе учитывается теплоотдача при турбулентном течении металла; при закрытом затворе канал считается теплоизолированным.

Таким образом, температурное поле конструкции описывается системой дифференциальных уравнений теплопроводности (индекс 1 относится к плитам, 2 – к коллектору):

$$\begin{cases} c_1 \rho_1 \frac{\partial T_1}{\partial \tau} = \frac{\partial}{\partial x} \left(\lambda_1 \frac{\partial T_1}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_1 \frac{\partial T_1}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_1 \frac{\partial T_1}{\partial z} \right) \\ c_2 \rho_2 \frac{\partial T_2}{\partial \tau} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda_2 \frac{\partial T_2}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda_2 \frac{\partial T_2}{\partial z} \right) \end{cases}, \quad (1)$$

дополненными следующими граничными условиями:

$$\left(\frac{\partial T_1}{\partial z}\right)_t = 0; \qquad (2.1)$$

$$-\lambda_{1} \left(\frac{\partial T_{1}}{\partial z} \right)_{b} = \left[\overline{\alpha}_{b_{k}} + (1 - \zeta) \overline{\alpha}_{b_{r}} \right] T_{1_{b}} - T_{0} + \zeta \overline{\alpha}_{b_{r}}' \left[T_{1_{b}} - T_{Me} \right];$$

$$(2.2)$$

$$-\lambda_1 \left(\frac{\partial T_1}{\partial y}\right) = \alpha_s \left(T_{1_s} - T_0\right)_s; \qquad (2.3)$$

$$-\lambda_1 \left(\frac{\partial T_1}{\partial x}\right)_a = -\lambda_1 \left(\frac{\partial T_1}{\partial y}\right)_a = \zeta \overline{\alpha}_{Me} \left(T_{1_a} - T_{Me}\right); \quad (2.4)$$

$$-\lambda_{2} \left(\frac{\partial T_{2}}{\partial z} \right)_{b} = \left[\overline{\alpha}_{b_{k}} + (1 - \zeta) \overline{\alpha}_{b_{r}} \right] \left[T_{2_{b}} - T_{0} \right] + \zeta \alpha_{b_{r}}' \left[T_{2_{b}} - T_{Me} \right];$$

$$(2.5)$$

$$\lambda_2 \left(\frac{\partial T_2}{\partial r} \right)_a = \zeta \overline{\alpha}_{Me} \left(T_{2_a} - T_{Me} \right);$$
 (2.6)

$$-\lambda_{2} \left(\frac{\partial T_{2}}{\partial r} \right)_{s} = \left[\overline{\alpha}_{s_{k}} + (1 - \zeta) \overline{\alpha}_{s_{r}} \right] \left[T_{2_{s}} - T_{0} \right] + \zeta \alpha'_{s_{r}} \left[T_{2_{s}} - T_{Me} \right];$$

$$(2.7)$$

$$T_1 = T_2, \ \lambda_1 \left(\frac{\partial T_1}{\partial z}\right)_b = \lambda_2 \left(\frac{\partial T_2}{\partial z}\right)_t,$$
 (2.8)

где T – расчетная температура устройства; T_0 – температура окружающей среды; T_{Me} – температура разливки; c – удельная теплоемкость; ρ – плотность; λ – коэффициент теплопроводности; x, y, z, r – соответствующая координата; τ – время; α – коэффициент теплоотдачи; $\overline{\alpha}$ – средний по поверхности коэффициент теплоотдачи; индексы: t (от top – верх), b (от bottom – низ), s (от side – бок), a (от aperture – отверстие) – обозначают соответствующую поверхность устройства, r и k – обозначают радиационную и конвективную составляющие теплообмена, Me – относится к разливаемому металлу.

В системе уравнений, описывающих граничные условия теплообмена, присутствует логический коэффициент ζ, принимающий значения 1 (собственно разливка стали) или 0 (закрытое состояние затвора). Тем самым моделируется текущий период операции, в том числе и переезд сталеразливочного ковша между изложницами (при верхней разливке) или поддонами (при разливке стали сифоном), когда граничные условия теплообмена III рода в сталеразливочном канале устройства переходят в граничные условия II рода (теплоизоляция) (см. уравнения (2.4) и (2.6) при значении ζ=0). При непрерывной разливке металла ζ=1 на протяжении всего процесса перелива металла из сталь-ковша в промежуточный ковш. В периоды оборота ковша и выпуска металла из сталеплавильного агрегата коэффициент ζ равен нулю.

Методика расчета средних по поверхности коэффициентов конвективного ($\overline{\alpha}_k$), радиационного (лучистого) теплообмена ($\overline{\alpha}_r$), суммарного коэффициента теплоотдачи (α), а также средней теплоотдачи при турбулентном течении металла в разливочном канале устройства ($\overline{\alpha}_{Me}$) подробно рассмотрена в работе [3]. Здесь же собраны все необходимые для расчета физические свойства теплоносителей и материалов устройства.

При закрытом затворе расчет лучистого теплообмена редуцируется в классическую задачу теплообмена излучением между невогнутой серой поверхностью затвора и облегающей ее серой поверхностью окружающих конструкций, которые вместе образуют замкнутую систему (см. уравнения (2.2), (2.5) и (2.7) при значении ζ=0). Решение задачи в такой постановке не вызывает никаких сложностей.

При открытом затворе задача исследования лучистого теплообмена в сложной системе серых излучающих поверхностей: шиберный затвор–струя–зеркало металла значительно усложняется (см. те же уравнения при значении ζ=1) [6, 7].

В настоящей работе решение фундаментальной задачи радиационного теплообмена в замкнутой системе излучающих диффузно-серых, разделенных прозрачной (диатермичной) средой, поверхностей выполнено на основе резольвентно-зонального метода. Так называемые зональные методы основываются на замене непрерывного распределения температуры и радиационных свойств излучающей системы дискретным. При этом поле указанных характеристик считается состоящим из конечного числа термически и оптически однородных участков (тел, зон, элементов) [8].

Рис. 2. Температурное поле плит шиберного затвора (в представленном на рис.1 сечении) к моменту завершения операции верхней (а), сифонной (б) и непрерывной (в) разливки стали

При использовании указанного метода с учетом допущения о равенстве температуры поверхностей струи и зеркала металла среднезональная плотность потока результирующего излучения для нижней поверхности кожуха плит затвора, а также для торцовой поверхности стакана-коллектора находится из соотношения [6, 7]:

$$q'_{b_r} = \sigma_0 a_b a_{Me} \left(\Phi_{b \to c} + \Phi_{b \to 3} \right) \left(T^4_{Me} - T^4_b \right), \quad (3.1)$$

где σ_0 – постоянная Стефана–Больцмана; a_b , a_{Me} – поглощательные способности нижней поверхности шиберного затвора (кожуха) и жидкой стали соответственно; $\Phi_{b\to c}$, $\Phi_{b\to 3}$ – разрешающие угловые коэффициенты излучения нижних поверхностей кожуха плит затвора или стакана-коллектора на струю и зеркало метала соответственно.

Для кольцевого элемента на боковой поверхности стакана-коллектора среднезональная плотность потока результирующего излучения рассчитывается по формуле [7]:

$$q'_{s_{r}} = \sigma_{0} a_{s} a_{Me} \Phi_{s \to 3} \left(T_{Me}^{4} - T_{s}^{4} \right), \qquad (3.2)$$

где a_s – поглощательная способность боковой поверхности стакана-коллектора; $\Phi_{s \rightarrow 3}$ – разрешающий угловой коэффициент излучения боковой поверхности стакана-коллектора на зеркало метала.

Расчет разрешающих угловых коэффициентов ведется по методике [9] и сводится в итоге к нахожде-

нию угловых коэффициентов – геометрических инвариантов излучения [6, 7].

Так, в случае расчета $\overline{\alpha}'_r$ для нижней поверхности кожуха плит затвора производится вычисление средних угловых коэффициентов для системы поверхностей: прямой круговой цилиндр (струя) и соосно расположенные с торцов и перпендикулярные ему кольца (поверхность затвора и поверхность зеркала металла) известных размеров [6].

При расчете α'_r для наружной поверхности стакана-коллектора производится вычисление местных угловых коэффициентов. При этом определение α'_{b_r} ведется для системы, которая включает струю и зеркало металла в металлоприёмнике, а α'_{s_r} – для системы: зеркало металла

- нижняя поверхность корпуса плит затвора [7].

Отдельно необходимо отметить, что при сифонной разливке стали поверхность зеркала металла под ковшом отсутствует, и уравнение (3.1) для нижней поверхности кожуха плит затвора, а также для торцовой поверхности стакана-коллектора, заметно упрощается и преобразовываются к виду [6, 7]:

$$q'_{b_r} = \sigma_0 a_b a_{Me} \Phi_{b \to c} \left(T_{Me}^4 - T_b^4 \right).$$
(3.1.1)

Для боковой поверхности стакана-коллектора при этом $q'_{s_{\mu}} = 0$ [7].

Puc.3. Температурное поле стакана-коллектора шиберного затвора (в представленном на рис.1 сечении) к моменту завершения операции верхней (а), сифонной (б) и непрерывной (в) разливки стали Аддитивная неявная разностная схема получена интегро-интерполяционным методом с реализацией на

ПЭВМ методом прогонки [10] применительно к условиям разливки стали марки 45тр из 250-тонных ковшей в конвертерном цехе Днепровского металлургического комбината (периклазовые плиты №10А; периклазографитовый стакан-коллектор №25).

Основные размеры шиберного затвора приведены на рис. 1. Диаметр струи металла в задаче радиационного теплообмена принимается одинаковым по всей длине и равным диаметру сталеразливочного отверстия в стакане-коллекторе – 0,06 м.

Остальные исходные данные определяются способом разливки стали и принимаются в соответствии с технологической инструкцией и практикой разливки стали в конвертерном цехе (подробно описаны в [4, 7]).

Программирование математической модели произведено в среде *Borland Pascal for Windows* (*Borland International, Inc.*) с обработкой полученных результатов в приложении *Mathcad* (*MathSoft, Inc.*).

Результаты вычислительных экспериментов представлены на рис. 2 и рис. 3.

Данные результаты, как и ранее в [4], подтверждают, что современные условия разливки стали, и особенно на машинах непрерывного литья заготовок, выдвигают достаточно серьезные требования к применяемым шиберным системам и их огнеупорам. Это особенно важно, когда выдвигаются требования многократного использования дорогостоящих огнеупорных плит устройства.

Достаточно высокие рабочие температуры шиберного затвора, подтверждаемые результатами численных экспериментов, требуют также разработки мероприятий по его вынужденному охлаждению и защите от воздействия агрессивных технологических факторов.

Как сама математическая модель, так и полученные результаты могут быть использованы при разработке новых и модернизации действующих ковшовых шиберных устройств, а также при исследовании температурного режима эксплуатации внедряемых затворов и современных технологий непрерывной разливки стали с их использованием. Это является предметом дальнейших исследований настоящего авторского коллектива. На данном этапе полученные результаты использованы для разработки шиберного затвора с малогабаритными огнеупорными плитами.

ЛИТЕРАТУРА

- 1. Перспективы применения шиберных затворов при разливке / В.А.Кононов, А.А.Алпатов, А.И.Соколов и др. // Сталь. 2002. №3. С.59-66.
- Кулик А.Д. Основные проблемы шиберной технологии разливки стали // Сталь.– 2001.– №2.– С.13-15.
- Кулик А.Д., Огурцов А.П., Жульковский О.А. Математическая модель температурного состояния шиберного затвора // Изв. вузов. Черная металлургия.– 1999.– №4.– С.12-15.
- Огурцов А.П., Жульковская И.И., Кулик А.Д. Расчет температурного состояния ковшового шиберного затвора при различных способах разливки стали // Изв. вузов. Черная металлургия. 2001. №4. С.11-15.
- Жульковская И.И. Математическая модель температурного режима ковшового затвора (стаканаколлектора) // Тез. доп. Міждерж. науково-метод. конф. «Проблеми математичного моделювання».– Дніпродзержинськ, ДДТУ.– 2005.– С.61.
- Огурцов А.П., Жульковская И.И., Кулик А.Д. Расчет радиационного теплообмена поверхности ковшового затвора // Пром. теплотехника.– 2000.– Т.22, №3.– С.5-8.
- Огурцов А.П., Жульковская И.И. К расчету радиационного теплообмена поверхности ковшового затвора (стакана-коллектора) // Математичне моделювання.– 2000.– №2 (5).– С.72-75.
- Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением: Справочник.– М.: Энергоатомиздат, 1991.– 432с.
- Зигель Р., Хауэлл Дж. Теплообмен излучением / Пер. с англ. под ред. Б.А.Хрусталева.– М.: Мир, 1975.–934с.
- Дульнев Г.Н., Парфенов В.Г., Сигалов А.В. Применение ЭВМ для решения задач теплообмена.– М.: Высш. шк., 1990.– 207с.