Рижский технический университет Латвийская морская академия

ДИАГНОСТИКА СУДОВОГО ЭЛЕКТРОПРИВОДА ПО СПЕКТРАЛЬНО-ЭНЕРГЕТИЧЕСКИМ ПОКАЗАТЕЛЯМ В ПЕРЕХОДНЫХ РЕЖИМАХ

Введение. В системах технической диагностики обычно применяется большое количество датчиков тепловых, механических, электрических и других величин. Сократить число применяемых датчиков в системах диагностики можно, увеличив точность измерения основных параметров энергетической установки. Исследование с погрешностью не более 0,5% спектрально-энергетического состава выходного напряжения дизель-генератора даёт возможность диагностировать текущее техническое состояние как генератора, так и приводного дизеля.

Постановка задач исследования. Целью исследования является установление качественных и количественных связей между спектрально-энергетическим составом выходных напряжений и токов синхронного генератора и текущим техническим состоянием как самого генератора, так и дизеля. А именно: осевую и радиальную несимметрию ротора генератора относительно расточки статора, неравномерный воздушный зазор и его циклическое изменение, состояние подшипниковых узлов, неравномерный вращающий момент, неравномерность мгновенной угловой скорости и мгновенного углового ускорения за один или несколько оборотов коленчатого вала дизеля. Последнее характеризует качество протекания рабочего процесса в цилиндрах дизеля, т.е. его техническое состояние. Во время переходных процессов (сброс и наброс нагрузки, и т.д.) при резком изменении тормозного (вращающего) момента наиболее полно проявляются зарождающиеся дефекты, разрегулировки систем, нарушения в работе газораспределительного и кривошипно-шатунного механизмов

Материалы исследования. Спектрально-энергетические показатели выходного напряжения и тока исследовались на дизель-генераторной установке мощностью 75 кВА с синхронным трёхфазным генератором 230/400 В, 50 Гц и четырехцилиндровым дизелем с частотой вращения коленчатого вала 1000 об/мин. Дизельгенераторная установка была дополнительно снабжена датчиком верхней мёртвой точки первого цилиндра, датчиком углового положения коленчатого вала дизеля (использовался зубчатый венец маховика). Этот же датчик использовался для измерения мгновенной угловой скорости и мгновенного углового ускорения. Измерения тока и напряжения генератора производились датчиками с использованием эффекта Холла и 10-12 разрядными АЦП. На рис. 1 показан спектр выходного напряжения синхронного генератора для исправного состояния (а) и неисправного состояния (в) дизель-генераторной установки.

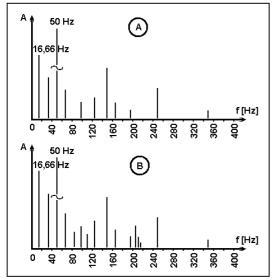


Таблица 1

f [Hz]	Амплитуда (о.е.)	
	Исправный	Неисправный
8,3	0,3	
16,7	1,0	1,21
33,3	0,65	0,74
50		
66	0,48	0,52
83	0,2	0,25
100		
116	0,27	0,3
133	0,3	0,45
150		
166	0,27	0,33
200	0,18	0,21
350	0,1	0,16

Рис.1. Спектр выходного напряжения для исправного состояния (a) и неисправного состояния (в)

В таблице 1 указаны значения амплитуд некоторых частот для исправной и неисправной дизель-энергетической установки. В среднем амплитуда характерных частот у неисправной дизель -энергетической установки увеличилась на 6...12%. Это увеличение амплитуды является диагностическим параметром.

Значение основной частоты 16,66 Гц принято за единицу (для исправной дизель-генераторной установки). Параметры для исправного состояния дизель-генераторной установки могут быть приняты за эталонные значения. В процессе диагностики эти эталонные значения сравниваются с текущими значениями аналогичных параметров. При существенных отклонениях (обычно свыше 5%) текущих параметров от эталонных возможно зарождение неисправности. В переходных режимах диагностическими параметрами являются длительность переходного процесса, величина мгновенного значения угловой скорости и углового ускорения, спектральный состав входного напряжения за каждые 10-50 градусов угла поворота коленчатого вала дизеля. Обработка результатов измерений осуществлялась на переносном компьютере, к USB –портам которого подключались через соответствующие устройства датчики механических и электрических величин.

Выводы.

- 1. Повышение точности измерения выходных токов и напряжений синхронного генератора позволяет использовать синхронную машину как многофункциональный датчик диагностирующих параметров в установившемся и в переходном режимах.
- 2. Спектрально-энергетические показатели выходного напряжения (тока) синхронного генератора связаны с текущим техническим состоянием как самого генератора, так и дизеля.
- 3. Особый интерес представляют спектрально –энергетические показатели, снятые при переходных режимах, и их сравнение с эталонными значениями.

Литература.

- 1. Важнов А.И. Переходные процессы в машинах переменного тока. Л.: Энергия. Ленингр. Отд-ние, 1980.-256с., ил. (С.183...199).
- 2. Fitzgerald A. E., Kingsly C. J., Kusko. A. Electric Machinery. 3th ed. New York, Mc Graw-Hill Book Company. 1971.
- 3. A. E. Fitzgerald, et. al. Electric Machines. 5th edit. New York. Wiley. 1983.
- 4. A. Gasparjan, J. Greivulis, A. Terebkov. Diagnostic of the Marine Diesel Engines. ICERS5 International Conference on Engine Room Simulators. Singapore Politechnic. Singapore. 2001.
- 5. J. Greivulis, A. Gasparjan, A. Terebkov. Complex of Vehicle Power Equipments. International Conference on Unconventional Electromechanical and Electrical Systems. Poland. 2001.
- 6. H. Henao, G.A. Capolino, C. Martis. On the Stray Flux Analysis for the detection of the Three Phase Induction Machine Faults. IEEE Industry Applications Society Conference. 2003.
- 7. Гаспарян А.С., Грейвулис Я.П., Теребков А.Ф. Спектрально -энергетический состав напряжения судовых дизель-генераторов как диагностический параметр систем технической диагностики. // Проблемы автоматизированного электропривода. Теория и практика: Вестник Национального технического университета «Харьковский политехнический институт». Серия "Электротехника, электроника и электропривод". Выпуск 45 ,Харьков: ХГПУ, 2005. том 1. С. 356 359.
- 8. Aleksandrs Terebkovs, Aleksandrs Gasparjans, Vitālijs Peipiņš. Technical diagnostics of ship asynchronous electric drives. Kuģu asinhronās elektropiedziņas tehniskā diagnostika. //. 9. starptautiskā zinātniski praktiskā conference "Ūdens transports un infrastruktūra 2007". Konferences materiāli. ISSN 1691-3817. Latvijas Jūras akadēmija.-Rīgā: 2007. gada 19.un 20. aprīlī. 160.- 165. lpp.