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ADAPTIVE CONTROL OF A 5 DOF MAGNETIC BEARING 

Introduction. Active magnetic bearings are getting more and more important in various applications. In contrast to 
conventional bearings the movable parts are not supported by mechanical contact or a fluid, but by magnetic forces. 
Therefore they are free of mechanical wear and need less maintenance. In addition, they permit a variable stiffness and 
damping assignment. As known, system's equilibrium is characterized by equality of magnetic and gravitational force. 
However, due to the attractive force between the magnet and the movable part the equilibrium is unstable and has to be 
stabilized by control. In industrial applications predominantly linear control laws (PID and state feedback) are used 
[1],[2]. As electromagnets provide a nonlinear behaviour between current and magnetic force the application of nonlin-
ear controllers has been investigated [3],[4] with promising result. 

As magnetic bearings are operating on heavy work pieces, which masses are varying in a wide range, the controller 
needs to be adapted. To achieve this automatically a nonlinear adaptive control scheme is presented. 

 
Plant model of the 5 degree of freedom magnetic bearing. For the magnetic bearing 3 pairs of electromagnets 

(fig. 1 M1-M3) are used to support the load in 3 degrees of freedom  x yz, ,   and 3 electromagnets (fig. 1 M4-M6) 

for centering  x, y . To measure the position in all 5 degrees of freedom 6 sensors (fig. 1 S1-S6) are used. 

The measured distances 1 6
T

S S Sx (x ,..., x ) are derived from the generalized coordinates 
y

T
xq (q ,..., q ) apply-

ing a coordinate transformation Sq x : S SBx J q.  To derive the generalized coordinates from the measurement this 

transformation has to be inverted using the pseudo inverse SBJ  : SB Sq J x . The generalized forces 
T

q x yF (F ,..., M ) are derived from the magnetic forces 
1 6A A AF (F , ..., F )  applying a coordinate transformation 

A qF F  : T
q AB AF J F . To derive the actor forces from the generalized forces this transformation has to be inverted 

using the pseudo inverse T
AB(J ) :  T

A AB qF J F


 . 

The magnetic force depends on the applied current Ai  and on the air gap Ax  between the electromagnet and the 
supported disc. In this configuration a current is applied to the upper electromagnet in order to generate a positive force 
and to the lower to generate a negative force respectively. Here a positive force F 0  is associated with a positive cur-
rent i 0  and a negative force F 0 with a negative current i 0  respectively. 
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Fig.1. 5 degree of freedom magnetic bearing 



Современные системы промышленного  
электропривода  

316

 
Assuming that the associated mass matrix M  has diagonal structure the overall systems equations are as follows: 
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. (2) 

 
Nonlinear Adaptive Control. In the following feedback linearization control theory is applied assuming the load 

would be known. Therefore the system has to be transformed to the Brunovsky form, where all nonlinearities can be ex-
actly compensated. The remaining chain of integrators can then be stabilized applying linear control theory. The un-
known load will then be substituted by its estimate. The derived control is therefore a certainty equivalence law [5],[6] 
which has to be augmented by an appropriate parameter update law to account for the unknown and changing load. The 
parameter update law will be derived applying Lyapunov stability theory, which guarantees the stability of the closed 
loop system for a wide range of masses. 

For the 5 degree of freedom magnetic bearing the control task is set point regulation. For the sake of clarity the gen-
eralized forces Fq will be treated as the control input u . The associated u  is derived from (1). Fortunately the systems 

equations are already in the Brunovsky form (2). Using the associated error variable  Tq q qS qz x x x    linear op-

timal control theory can be used to derive a stabilizing control law. Therefore the following Riccati equation (3) is 
solved. 
 T 1A P PA PBR BP Q 0     (3) 
 1 Tv R B Pz   (4) 

The solution P can be used to construct a Lyapunov function T1V z Pz
2

 . Compensating the gravity acceleration 

and the unknown mass matrix gives the following certainty equivalence control law u : 
 

 Eu M g v


  . (5) 

To derive a parameter update law which guarantees stability in the sense of Lyapunov the Lyapunov function 

T1V z Pz
2

  has to be augmented by an additional term 
5

2
i

i 1

1
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
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 ,where i i i


    is the estimation error and 
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   are parameters of the mass matrix. 
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Time differentiation gives: 

 5
T

i i
i 1

1V z Pz


   


   , (7) 

 .
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Completing by zero (
1

E0 g v M u
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    (5)) yields: 
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(10) 
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To compensated the unknown dynamics caused by the estimation error i the parameter update law is chosen as fol-

lows: 
 .

T
ii u B Pz


   . 

(12) 

 
Applying the parameter update law (12) guarantees the negative definiteness of the time derivative of the Lyapunov 

function and therefore stability in the sense of Lyapunov: 
 T T 1 T1 1V z Qz z PBR B Pz 0

2 2
    . (13) 

 
To verify the presented control scheme a mass m=2kg was added at set point. The control parameters Q  and R are 

chosen as follows:  
 7

11 33 55 77 99q q q q q 10     , 
3

22 44 66 88 1010q q q q q 10     , 

11 22 33 44 55r r r r r 1     . 

ij ijq r 0   for i j . 

(14) 

In the upper part of (fig. 2) the position zq  (fig. 2 left) and the applied current 
1Ai (fig. 2 right) are shown for the 

feedback linearization controller without adaptation 0  . In the lower part of (fig. 2) the position zq  (fig. 2 left) and 
the applied current 

1Ai  (fig. 2 right) are shown for the proposed adaptive control law with 0  .1. 
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Fig.2. Position zq  (left) and current 

1Ai  (right) for feedback linearization (top) and adaptive feedback linearization 
(bottom) (m=2kg) 


