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Introduction

 – everything flows, nothing stands still, refers to
Heraclitus’ approach highlighted in his meaningful quote describing most profoundly
the events of existing world. In the 21 century, our world is undergoing major changes,
although the most radical and large-scale transformations, first and foremost, deal
with the field of information society.

Back in the 1920 of the last century, Academician VI Vernadsky pointed out that
there is a strong human impact on the environment as well as the transformation of the
modern biosphere. One of his conclusions was the postulate that says mankind as
a biosphere element inevitably covers the reasonable control of the planet’s living skin,
turning it into one sphere – the no sphere (the sphere of reason). Those changes that
we are able to notice in the field of information, truly confirm the Vernadsky’s conclu-
sions. The significant shifts in information society (and especially within information
technology industries) are not just another move towards the development of scientific
and technological revolution, but also have a global civilizational nature. It is anticipat-
ed that by the middle of the 21st century, our planet will create a completely new kind
of civilization – an information civilization. The formation process of the civilization
will highly increase the significance of information and scientific knowledge in almost
all spheres of society.

So what information is about? In a narrower sense, information is defined as any
set of signals impacts or data which a system received from the environment (input
information X), issued in the environment (Y output information) and stored within
itself (internal, internal system information Z).

In broad terms, the information should be considered as a special kind of
resource, as the stock of knowledge including certain material objects or energy, struc-
tural or any other object characteristics. Compared to the resources associated with
material objects, information resources are inexhaustible requiring substantially dif-
ferent methods of reproduction and renewal than material resources.

The highest form of information is knowledge. The interdisciplinary concept which
claims to be included in the most important philosophical category. From philosophical
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standpoint knowledge management is primarily seen as one of the functional aspects
of management areas.

One of the tools to work through information is Data Mining. The term Data
Mining was introduced first by Gregory Piatetskim-Shapiro in 1989. It is primarily used
to designate a plurality of information and feature extraction methods from a large
number of poorly structured data source. Specifically Data Mining methods are quite
easily fragmented including systems: Web Mining, Text Mining etc.

The core of Data Mining techniques includes all sorts of classification methods,
modeling and prediction, based on the use of decision trees, artificial neural networks,
genetic algorithms, evolutionary programming, associative memory, fuzzy logic. The Data
Mining techniques often use statistical methods (descriptive analysis, correlation and
regression analysis, factor analysis, variance analysis, component analysis, discriminant
analysis, time series analysis, survival analysis, communications analysis). Such meth-
ods, however, require some notions of a priori for the analyzed data, which is some-
what at odds with the objectives of the Data Mining (detection of previously unknown
non-trivial and practically useful knowledge).

One of the most essential postulates of Data Mining methods is a visual represen-
tation of the calculations results (visualization) that allows people, who have no special
mathematical training, use the Data Mining toolkit. At the same time, the use of statis-
tical methods referring to data analysis calls for applying probability and mathematical
statistics.

Data mining techniques can be used for working with large data, and through
relatively small amounts of data (obtained, e.g., by results of separate experiments or
the analysis about the company data). A criterion for a sufficient amount of data is
labeled as a field of study and analysis algorithm which is being applied these days.

The methods of Data Mining, are primarily implemented to solve problems which
are divided into either descriptive or predictive ones.

The descriptive tasks, most importantly, give a clear explanation of the existing
hidden patterns, while the nature of predictive tasks is predominantly based on a ques-
tion about the prediction of the cases for which information was not delivered yet.

Descriptive tasks include:

– search association rules or patterns (samples);
– grouping objects, cluster analysis;
– construction of a regression model.

Predictive tasks include:

– classification of objects (for predetermined classes);
– regression analysis, time series analysis.
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The monograph is a basic information about a method of least squares, principal
component analysis, linear discriminant Fischer analysis, the use of fuzzy logic in Data
Mining, soft calculation in data processing, clustering methods, classifiers, decision
trees, support vector machines, visualization of multidimensional data and recom-
mending system.

Preface

Basically, the monography gives an insight into the research dedicated to the fields
of Data Mining included within 10 sections. The appending is designed as an introduc-
tion giving an overview of elementary maths applied for data transformation method.
For better comprehending of the book, we outlined the basis of lineal algebra as well
as probability calculation. As for the first section, it introduces the Least Squared
Method either in elementary model or estimated model type. In particular, it discusses
model using the type of spline piecewise line or polygonal linear functions.

In the face of collecting data into big data sets, Factor Analysis and Principal
Component Analysis are presented in the second section as solutions for reducing data
size. The unit demonstrates the example based on the transition of RGB model
to three-component model. The chapter discusses examples of the Fisher’s Linear Dis-
criminant method used for compressing and recognizing image.

These days, artificial intelligence has been widely seen as one of the most essential
tasks. Presently, the challenge for programmer is based on designing such a system
which is able to consider human subjective valuation, for instance, referring to weather
or product reviews. For example, implications, such as: „If there is a nice weather, then
I will go for playing tennis but If there is a bad weather, then I will go to the swimming
pool”, include the uncertainty of the choice whether I should go to the swimming pool
or not. Such linguistic variable and linguistic gains can be implemented by means of
fuzzy logic, which is able to distinguish the uncertainty of human choices.

The third section consists of examples referring to operations based on fuzzy set
as well as fuzzy rules. Not to mention that Mamdani, Tsukamoto, Sugeno and Larsen’s
systems were used for selecting financing stylesheets. Besides, the unit is extended to
alternative heuristic rank method. Also, the part describes fuzzy decision tree used for
selecting applicants with proper qualifications and salary expectations.

The next section introduces the subjects of general Soft Computing including
evaluation, genetics and ants algorithms as well as neural networks. The cornerstone
of this part is based on the examples given in Python, which are available to be down-
loaded CD.

The 5th part includes clustering methods beginning with setting the object simi-
larity measure, through different clustering methods such as hierarchical methods,
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optimization methods (k-means and fuzzy k-means) to proceeding to maximizing cor-
relation communication. Considered example is based on clustering of images.

The next section gives an overview of classification problems such as Bayes native
classifier and its extension to EM algorithm. The Linear Discriminant methods
are used and extended by adding nonlinear models. The linear approach was applied
for distinguishing reviews left on websites into negative and positive ones. This unit
discusses three implemented examples in Python.

An application of genetics algorithms in classification methods is demonstrated
in 7th section. As the example, the section shows text classification. It is extended
with polyhedron Black area used for solving the problem referring to classification of texts.
Moreover, the comparison using the base of Reuters documents is demonstrated there.

Support Vector Machine is the issue presented in 8th section. The chapter shows
applying this method for linear separable and non-linear separable sets.

These days, the major task is to approximate the interpretation and visualization
of the estimated conclusions. In large data sets, the interpreting and presenting
the obtained results has been a great challenge. Plotting the results on a plane seems
to be a solution, especially when it comes to retaining the objects similarity. Section 9th
gives a good grounding for examples of multidimensional scaling applying Kohonen’s
self-organizing maps on the example of World map of poverty. This is one of the
options that allows to find a solution for traveler salesman problem.

The last chapter focusses on modelling and applicating recommendation systems.
In the light of collecting all types of data, i.e., tracking websites, verifying social
media inquiries, searching for hidden preference profiles, such systems are a great
importance. The definition of user profiles is shown on the example using the known
methods of data mining for selecting mobile network operators, selecting videos, or
for choosing the audiobook to be listened to. Besides, selected ranking systems are
presented on the analysis of social media text.

As examples of the implementation of the algorithms presented in the book there
are given source code of programs in Python.
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1. Least-squares method

1.1. Ordinary least square method

Let the following system of points be given (see Tab. 1.1) where the number of
points N is big and data are obtained with the mistake.

Table 1.1

Experimental data

Such situation is common when processing experimental data. For that matter,
the use of interpolation methods is inexpedient. We should add to this, the situation
when the priori information in the studied process is accessible and the nature of the
target device is defined by technological conditions or the nature of the phenomenon.
The choice of the estimated function coefficients is determined, first of all, by adequa-
cy to the used model, that is, the error between the input data and its description has to
be relatively small. Clearly, the choice of proximity criterion is the most essential. As
a rule, the solution for such tasks relies on mean square distance. It is caused, first of
all, by the fact that in this case, when using linear methods of approach, function of the
purpose is represented by square function – the paraboloid. Owing to camber, the pa-
raboloid has the only extremum therefore the necessary condition of the extremum
matches with the sufficient one that significantly simplifies the problem of search
of the minimum value of objective function. Respectively, the method of finding
the extremum for this objective function is called the least-squares method (see in
Björck 1996, Encyclopedia Britannica 2018, Lawson 1987, Miller 2006, Ordinary least...,
Robinson 1983, Wolberg 2006).

ix  0x  1x  … Nx  

it  0t  1t  … Nt  
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Now, we turn to the method of least squares. The purpose of the method is to
determine a function of form below (see eq. (1.1)) in accordance with the initial data
given in Table 1.1.

{ }( ) ( ) ( ) ( ) ( )0 0 1 10
0

, ...
n

n
i i i n ni

i

F a t a t a t a t a t=
=

= φ = φ + φ + + φ∑ (1.1)

where:
( ), 0, ...,i t i nφ = – are the basic functions,

ai – the unknown coefficients which are subject to definition.

In particular, if we use degree monomials as basic functions ( ) ,ii t tφ =  the task
comes down to search for the polynomial with degree n in following form

{ }( ) 0 10
0

.. ,, .
n

n i n
i i ni

i

F a t a t a a t a t=
=

= = + + +∑

which estimates points from the initial table.

For finding coefficients ai let’s look at the function { }( )0,n
i iF a t=  (shown in

Fig. 1.1), for which the deviation between the values of function and the values set
in the Table 1.1 is the smallest in integral sense.

Fig. 1.1. Illustration of LSM

In particular, in the discrete least-squares method the objective function is under
the following construction

( ) ( )( )

( ) ( ) ( )( )

2 2
0 1 0 1

0

2 2
0 0 1 1

0

, , ..., , , ..., ,

...

N

n n i i i
i

N

i i n n i i i
i

S a a a F a a a t x

a t a t a t x

=

=

= − ρ

= φ + φ + + φ −

=

ρ

∑

∑
(1.2)

where ρi – some non-negative numbers (weighting coefficients).
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If all deviation are equal zero, then weighting coefficients are equal to one.
Geometrically the objective function (1.2) represents the sum of squares of de-

viations between experimental data xi and values of the approximating function
( )0 1, , ..., ,nF a a a t  in points ti (i = 0, …, N) with the weight ρi.

For finding the minimum of multivariable, let’s look at the function

( )
0 1

0 1
, , ...,

, , ..., mi ,n
n

n
a a a

S a a a →

the first-order partial derivative of objective function S(a0, a1, …, an) with respect to
each ai are equal zero i.e.:

( )( ) ( )

( )( ) ( )

( )( ) ( )

2
0 1 0

0 0

2
0 1 1

1 0

2
0 1

0

2 , , ..., , 0,

2 , , ..., , 0,

.................

2 , , ..., , 0.

N

n i i i i
i

N

n i i i i
i

N

n i i n i i
n i

S
F a a a t x t

a

S
F a a a t x t

a

S
F a a a t x t

a

=

=

=

∂ = − φ ρ =
∂

∂ = − φ ρ =
∂

∂ = − φ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

ρ =
∂

∑

∑

∑

(1.3)

These system of equations (1.3) is a necessary condition (and, in this case, owing
to convexity of the objective function, also sufficient condition) for determining this
minimum.

The received system of equations represents the system of linear algebraic equa-
tions with n + 1 unknowns a0, a1, ..., an. The system is solvable under the condition
n ≤ N. Its matrix is symmetric and positive definite. Parameters a0, a1, ..., an ensure
minimization of equation (1.2).

The solution of this system can be carried out by any of the known methods (for
example, Gauss’s method, Cramer’s rule, etc.). Substituting in (1.1) a0, a1, ..., an with
values found as the solution of linear system (1.3), we receive the F(t) function that is
the best approximation of the input data from Table 1.1 in mean square sense. Quality
of such approach can be evaluated by the size of root-mean-square deviation

( )( )2 2

0

1
.

1

N

i i i
i

x F t
N =

σ = − ρ
+ ∑

Quite often, natural assumption is that the input data is the most efficiently mod-
eled by a straight line or a parabola. In this case, we say that linear or square regression
is used.
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Let’s consider the case of the priori data description for the straight line used by
the method of linear regression. Let’s the input data (ti, xi), i = 0, 1, ..., N be approximated
by straight line x = at + b. In this case the objective function (1.2) will take the form

( ) ( )2
,0

., min
N

i i
a bi

S a b at b x
=

= + − →∑

The necessary (and, in this case, sufficient) condition of the extremum can be writ-
ten as follows:

( ) ( )

( ) ( )

0

0

, 2 0,

, 2 0,

N

i i i
i

N

i i
i

S a b t at b x
a

S a b at b x
b

=

=

⎧ ∂ = + − =⎪
∂⎪⎪

⎨
⎪ ∂ = + − =⎪ ∂⎪⎩

∑

∑

or that the same:

( )

2

0 0 0

0 0

,

1 .

N N N

i i i i
i i i

N N

i i
i i

a t b t x t

a t b N x

= = =

= =

⎧
+ =⎪

⎪⎪
⎨
⎪

+ + =⎪
⎪⎩

∑ ∑ ∑

∑ ∑

As the result, applying Cramer’s rule in solving of linear equations system, we re-
ceive straight-line coefficients (linear regression):

( )

( )

( )

0 0 0
2

2

0 0

2

0 0 0 0
2

2

0 0

1

,

1

.

1

N N N

i i i i
i i i

N N

i i
i i

N N N N

i i i i i
i i i i

N N

i i
i i

N x t t x

a

N t t

t x t x t

b

N t t

= = =

= =

= = = =

= =

+ −

=
⎛ ⎞

+ − ⎜ ⎟⎜ ⎟⎝ ⎠

−

=
⎛ ⎞

+ − ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

Generally, widespread approach is based on piecewise polynomial functions or
splines. The most widespread type of splines are piecewise or polygonal linear func-
tions. As regression model, let’s consider the broken line with constant weigh function
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equal to one. Let Δn be the fixed splitting the interval [t0, T] at points τi (i = 0, 1, 2, ..., n),
and ( )nℜ Δ  set of broken lines ( ) { }( )0, , ,n

n i niP t P a t=Δ = Δ  with nodes in splitting
points Δn. Then the problem related to finding piecewise linear regression model with
the fixed nodes looks as follows

( )( ) ( ) ( )2

0
inf , | .

N

i n i n n
i

x P t P
=

⎧ ⎫⎪ ⎪− Δ Δ ∈ℜ Δ⎨ ⎬
⎪ ⎪⎩ ⎭
∑

It is easy to notice that

( ) { }( ) ( )0
0

, , , , ,
n

n
n i n i i ni

i

P t P a t a B t=
=

Δ = Δ = Δ∑

where ( ) ( ), 0, ...,Δ =i nB t i n  are basic functions which can be written down in the fol-

lowing way:

( ) ( )( ) [ ]1
1 1 0 0 1

0
, , ,

,
0, otherwise,

n
t t

B t
−⎧ τ − τ − τ ∈ τ τ⎪Δ = ⎨

⎪⎩

( ) ( )( ) [ ]1
1 1 1, , .

,
0, otherwise,

n n n
n n

t T t T
B t

−
− − −

⎧ τ − τ − ∈ τ⎪Δ = ⎨
⎪⎩
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Let’s write the objective function

( ) ( )
2

0 1
0 0

, , ..., ,,
N n

n j j n i i
i j

S a a a a B t x
= =

⎛ ⎞
⎜ ⎟= Δ −
⎜ ⎟⎝ ⎠

∑ ∑

also we will find the solution of the task ( )
0 1

0 1
, , ...,

, , ..., mi .n
n

n
a a a

S a a a →  Necessary and
sufficient condition of the extremum looks as follows

( )0 1, , ..., 0, 0, 1, ..., .n
i

S a a a i n
a
∂ = =
∂

Finding of the extremum comes down to the solution of combined equations

00 0 0 1 0 0

11 0 1 1 1 1

0 1

, , , ,

, , , ,
,

, , , ,

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

�

�

�� � � � �

�

n

n

nn n n n n

aB B B B B B x B

aB B B B B B x B

aB B B B B B x B

where

( )
0

, , , 0, 1, ..., ,
N

j i j n i
i

x B x B t j n
=

= Δ =∑

and noticing that , 0, , : 2i jB B i j i j= ∀ − ≥  we get combined equations with the
three-scalar matrix

0 0 0 1

1 0 1 1 1 2

2 1 2 2

, , 0 0

, , , 0

0 , , 0 .

0 0 0 ,n n

B B B B

B B B B B B

A B B B B

B B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

�

�

�

� � � � �

�

After applying the sweep method, we receive the effective algorithm finding the
equation of piecewise linear regression with the fixed nodes.

Let’s give the example of creating the broken line with the least-squares method
(see Fig. 1.2).
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Fig. 1.2. Application of discrete data for the broken line on LSM

1.2. Linearization at the least squares method

The given above methodology referring to the approximating functions by the
least squares method suits only for functions at which undetermined coefficients are
set linearly. If this condition is not satisfied, then direct use of the least squares method
is impossible.

How should it look like in this case? Whether in general it is possible to use
the least-squares method? Presumably yes. But unfortunately, it is necessary to apply
some additional constructions linearizing (on coefficients) the approximating function
(see Hastie et al. 2009, Rao, Toutenburg 1999, Lawson 1987, Wolberg 2006).

Several examples are given below.

Let’s also assume that the function is written as follows 1 ( ).x t= α +β
Then for xi the error will be calculated by using the following formula

1
i i

i
x

t
δ = −

α +β
(1.4)

Direct use of the least-squares method leads to minimization of the following
expression

( ) 2

2

1 1

1
,

n n

ii
ii i

S x
t= =

⎛ ⎞
α β = δ = −⎜ ⎟α +β⎝ ⎠

∑ ∑ (1.5)
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Let’s calculate the first order partial derivative of above mentioned function with
regards to coefficients α and β, where these partial derivative are equated to zero, we
will receive system of two nonlinear equations:

( )

( )

2
1

2
1

, 1
2 0,

( )

, 1 1
2 0,

( )

n
i

i
i ii

n

i
i ii

S t
x

t t

S
x

t t

=

=

⎧∂ α β ⎛ ⎞
= − =⎪ ⎜ ⎟∂α α +β α +β⎪ ⎝ ⎠⎪

⎨
⎪∂ α β ⎛ ⎞
⎪ = − =⎜ ⎟∂α α +β⎪ α +β⎝ ⎠⎩

∑

∑

which is not subject to the exact decision. In this instance, we will carry out some trans-
formations.

Let’s consider values

( ) ( )1, 1, 2, ..., .i i ix t i nΔ = α +β − =

Let’s establish dependency between Δi and δi. From (1.4) we get

1
.i

i i
t

x
α +β =

− δ

Then

( )1 , 1, 2, ...,i i
i

i i i i

x
i n

x x
δ

Δ = − = =
− δ − δ

and, therefore, at small Δi

1
.i i

i i i
i

x
x

Δ
δ = ≈ Δ

Δ +

Then the task (1.5) comes down to the problem related to determining coeffi-
cients α and β so that the objective function

( ) ( )2 2 2

1 1

1
n n

i i i i i i
i i

x t x x x
= =

Δ = −α −β∑ ∑

obtain minimum.
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Thus, we came to the task (1.2) provided that the approximated function is identi-
cally equal to unit and ( ) ( ) ( ) ( )0 1,t tx t t x tφ = φ =  with the weight ρi = xi.

The error of the objective function takes the following form

2

1

1 1
.

n

i
ii

x
n t=

⎛ ⎞
σ = −⎜ ⎟α +β⎝ ⎠

∑

Let’s review other example. Let the approximating function be written as

.
t

x
t

=
α +β

For xi the error should be equal

i
i i

i

t
x

t
δ = −

α +β
(1.6)

and

( ) ( ), 1, 2, ..., .i i i ix t t i nΔ = α +β − =

Let’s establish connection between Δi and δi. From (1.6) we have

.i
i

i i

t
t

x
α +β =

− δ

Then

( ), 1, 2, ..., .i i i i
i i

i i i i

t x t
t i n

x x
δ

Δ = − = =
− δ − δ

Next, as the result, at small Δi (a small neighborhood of the Δ)

.i i i
i i

i i i

x x
t t

Δ
δ = ≈ Δ

Δ +

For small δi

2

2

1 1

n n
i

ii
ii i

x
t= =

⎛ ⎞
δ ≈ Δ⎜ ⎟

⎝ ⎠
∑ ∑
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and

( )
2 2

2

1 1
.

n n
i i

i i i i i
i ii i

x x
t t x x

t t= =

⎛ ⎞ ⎛ ⎞
Δ = −α −β⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

Thus, we can move on to the task (1.2) provided that the fitted function is identi-
cally equal t and ( ) ( ) ( ) ( )0 1,t tx t t x tφ = φ =  with .i i ix tρ =

The error takes the form

2

1

1
.

n
i

i
ii

t
x

n t=

⎛ ⎞
σ = −⎜ ⎟α +β⎝ ⎠

∑

At last, let the approximating function be written as

.
1

t
x

t
α +β=
γ +

The task involves finding α, β, γ coefficients so that

2
2

1 1 1

n n
i

i i
ii i

t
x

t= =

⎛ ⎞α +β
δ = −⎜ ⎟γ +⎝ ⎠

∑ ∑

will be minimum. We linearize this task.
Let

( ), 1, 2, ..., .i i i i it x x t i nΔ = γ + −α −β =

Let’s establish dependence between Δi and δi. From previous calculation we receive

.
1 1

i i
i

i i

t
x

t t
Δ α +β

= −
γ + γ +

Thus, we get

.
1

i
i

it
Δ

= δ
γ +
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For small, Δi we receive the task equivalent to required minimum.

( )
2 2

2

1 1

1
min.

1 1

n n
i

i i i i
i ii i

x t t x
t t= =

⎛ ⎞ ⎛ ⎞Δ
= − α −β + γ →⎜ ⎟ ⎜ ⎟γ + γ +⎝ ⎠ ⎝ ⎠

∑ ∑

It is not possible to use the least-squares method as the method of determining
the unknown α, β, γ parameters. Therefore, we can consider the iterative method of
step-by-step calculation of weighting coefficients.

For the task (1.2) we will put ( ) ( ) ( ) ( )0 1 2, 1,t t t t tx tφ = φ = φ = −  and ρi=1.
Solving this problem, we receive first approximation α1, β1, γ1.
Assuming that ( ) ( ) ( ) ( ) ( )0 1 2 1, 1, , 1 1i it t t t tx t tφ = φ = φ = − ρ = γ +  and again solving

this problem, we receive α2, β2, γ2. Continuing this process at ( ) ( )0 1, 1,t t tφ = φ =
( ) ( ) ( )2 2, 1 1 ,i it tx t tφ = − ρ = γ +  we can determine the following values α, β, γ.

We will continue iteration until ratios are carried out:

1

1

1

,

,

,

k k

k k

k k

−

−

−

α −α < ε⎧
⎪
⎪⎪ β −β < ε⎨
⎪
⎪ γ − γ < ε⎪⎩

where ε is the set error.
Naturally, all the set of regression models used is not exhausted by fractional-

-linear functions, often used of the power and exponential functions.
Let’s look for the approximating (estimating) function in the form .x tβ= α  For all

i = 1, 2, …, n let’s put i i ix tβδ = −α  and

ln ln ln ln .i
i i i

i

x
x t

tβ
Δ = − α −β =

α

As we demonstrated before, we establish connection between these sizes. From
the first equality, we get i iit xβα = − δ  and substitute them in the second equation

ln .i
i

i i

x
x

Δ =
−δ
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Hence, ( )expi i i ix x− δ = −Δ  at small Δi we can write down

( )( )1 exp .i i i i ix xδ = − −Δ ≈ Δ  Thus, problem referring to the minimization of errors
2

1
n

ii= δ∑  can be replaced with the problem of minimization the following expression

( ) ( )2 2 2

1 1
ln ln n ,l

n n

i i i i i
i i

x x t x
= =

Δ = − α −β∑ ∑

which is the task (1.2).

The model error can look as follows

( )2
1

1
.

n

i i
i

x t
n

β

=
σ = −α∑

Let the approximation function be a set of monomials in the form .tx = αβ  For all
i = 1, 2, …, n let’s put it

i ixδ = −αβ  and ln ln ln ln ( ).it
i i i ix t xΔ = − α − β = αβ

Let’s find the dependence between these errors.
Expressed in the first equality it

i ixαβ = −δ  and substituted in the second, we receive

.it
i ixαβ = − δ

Therefore, ( )( )1 exp .i i i i ix xδ = − −Δ ≈ Δ  Thus, similarly, the problem related

to minimization of the sum 2
1

n
ii= δ∑  can be replaced with the problem minimization of

the expression

( ) ( )2 2 2

1 1
ln l ln ,n

n n

i i i i i
i i

x x t x
= =

Δ = − α − β∑ ∑

what solves the problem the purpose function (1.2).
In this case, the error takes the form

( )2
1

1
.i

N
t

i
i

x
N =

σ = −αβ∑



23

1.3. Examples in Python

Several examples given below are inspired by (Pedregosa et al. 2011).

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.1
# Linear regression (empirical data)
# company turnover (X) versus transportation cost (y)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt

X=[[125],[210],[260],[325],[410],[470],[510],[600],[700],[770],[840]]
y=[30,41,36,44,50,58,54,60,81,65,80]

reg = linear_model.LinearRegression()
reg.fit(X,y)

# print the parameters
print(reg.coef_)
print(reg.intercept_)
# prin the model
print( 'model :  y = ', reg.coef_,' * X + ', reg.intercept_, '\n')

# The mean squared error
print("Mean squared error: %.2f"
      % np.mean((reg.predict(X) - y) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % reg.score(X, y))

# Plot outputs
plt.scatter(X, y,  color='black')
plt.plot(X, reg.predict(X), color='blue', linewidth=3)

plt.show()
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.2
# Linear regression (generated data)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

from sklearn.datasets import make_regression
from sklearn import linear_model
import matplotlib.pyplot as plt
import numpy as np

# Generate data
rng = np.random.RandomState(0)
X, y = make_regression(n_samples=20, n_features=1, random_state=0, noise=4.0,
bias=0.0)

reg = linear_model.LinearRegression()
reg.fit(X,y)

# print the parameters:
print(reg.coef_)
print(reg.intercept_)
# print the model
print( 'model :  y = ', reg.coef_,' * X + ', reg.intercept_, '\n')

# The mean squared error
print("Mean squared error: %.2f"
      % np.mean((reg.predict(X) - y) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % reg.score(X, y))

# Plot outputs
plt.scatter(X, y,  color='red')
plt.plot(X, reg.predict(X), color='blue', linewidth=3)

plt.show()
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.3
# polynomial regression (generated data)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline

#define function to determine points with random parameters
def f(x):

return np.random.uniform(1.75,2.25,size = len(x))*x**3 - np.random.uniform(38,40, size =
len(x))*x**2 + np.random.uniform(238,242, size = len(x))*x - np.random.normal(0, 1,
size=len(x))

# generate points used to plot
x_plot = np.linspace(2, 10, 100)

# generate points and keep a subset of them
x = np.linspace(2, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = f(x)

colors = ['darkorchid', 'mediumvioletred', 'darkcyan']

plt.scatter(x_plot, f(x_plot), color='red',label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")

# create matrix versions of the data for regression model
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]

for count, degree in enumerate([ 3, 4, 5]):
model = Pipeline([('mypoly',PolynomialFeatures(degree)),

('mylinear',LinearRegression(fit_intercept=True))])
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=2, label="degree %d" % degree)

plt.legend(loc='lower left')
plt.show()
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# print the parameters:
print(model.named_steps['mylinear'].coef_)
#fited model:  y = 0 - 160x + 77.77x2 - 168.93x3 + 16.89x4 - 0.63x5 + e

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.4
# polynomial regression (generated data - function cos)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline

#define function to determine points with random parameters
def r(x):
    return  np.random.uniform(0.75,1.25,size = len(x))*x* np.cos(x) + np.random.normal(0, 1,

size=len(x))

# generate points used to plot
x_plot = np.linspace(2, 10, 100)
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# generate points and keep a subset of them
x = np.linspace(2, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = r(x)

colors = ['darkorchid', 'mediumvioletred', 'darkcyan']

plt.scatter(x_plot, r(x_plot), color='red',label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")

# create matrix versions of the data for regression model
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]

for count, degree in enumerate([ 3, 4, 5]):
model = Pipeline([('mypoly',PolynomialFeatures(degree)),

('mylinear',LinearRegression(fit_intercept=True))])
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=2, label="degree %d" % degree)

plt.legend(loc='lower left')
plt.show()

# print the parameters:
print(model.named_steps['mylinear'].coef_)
# fitted model: fited model:  y = 0 + 102.77x - 50.34x^2 + 112.253x^3 - 1.13x^4 - 0.04x^5 + e
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.5
# nonlinear regression ver 1
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model

def h(x):
return np.random.uniform(0.5,1.5,size = len(x))/(2*x + 2 ) - 0.005*np.random.normal(0, 1,

size=len(x))

# generate data
x_plot = np.linspace(2, 10, 100)

# generate points and keep a subset of them
x = np.linspace(2, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = h(x)

# the linear regression was used
x1 = y
x2 = x * y
y1 = np.ones(20)
w = x*x

dane = pd.DataFrame({'x2' : np.array(x2),
    'x1': np.array(x1), 'y1':np.array(y1)})

X = dane[["x1","x2"]]
y2 = dane["y1"]
# model without intercept
reg = linear_model.LinearRegression(fit_intercept=False)
# weighted
reg.fit(X,y1,sample_weight=w)
#parameters
print(reg.coef_)
#array([  2.32945022,  2.10992809])

# not weigthed
reg.fit(X,y1)
print(reg.coef_)
#array([ 1.72875482,  1.63686237])
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plt.scatter(x_plot, h(x_plot), color='red',label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")
y_est = 1/(2.3295*x+2.1099)
y_plot = 1/(2.3295*x_plot+2.1099)
plt.scatter(x, y_est, color='green', s=30, marker='o', label="est points")
plt.plot(x_plot, y_plot, color = 'grey', linewidth=2, label="line truth")
plt.legend(loc='best')
plt.show()

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.6
# nonlinear regression ver 2
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model

def g(x):
return x/(np.random.uniform(1.5,2.5,size = len(x))*x + 2 ) - 0.005*np.random.normal(0, 1,

size=len(x))

# generate data
x_plot = np.linspace(2, 10, 100)

# generate points and keep a subset of them
x = np.linspace(2, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
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x = np.sort(x[:20])
y = g(x)

# the linear regression was used
x1 = y
x2 = x * y
y1 = x
w = y/x

dane = pd.DataFrame({
                'x2': np.array(x2),
                'x1': np.array(x1),
                'y1': np.array(y1)
                })

X = dane[["x1","x2"]]
y2 = dane["y1"]
# model without intercept
reg = linear_model.LinearRegression(fit_intercept=False)
# weighted
reg.fit(X,y1,sample_weight=w)
#parameters
print(reg.coef_)
#array([ 1.83286441,  1.96808775])
plt.scatter(x_plot, g(x_plot), color='red',label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")
y_est = x/(1.8329*x+1.968)
y_plot = x_plot/(1.8329*x_plot+1.968)
plt.scatter(x, y_est, color='green', s=30, marker='o', label="est points")
plt.plot(x_plot, y_plot, color = 'grey', linewidth=2, label="line truth")
plt.legend(loc='best')
plt.show()
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 1.3.7
# linear regression for boston data
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn import datasets

reg = linear_model.LinearRegression()
boston = datasets.load_boston()
X = boston.data
y = boston.target
reg.fit(X,y)
print(reg.coef_)
print(reg.intercept_)
plt.scatter(y, reg.predict(X), color='red',label="ground truth")
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
plt.xlabel('Measured')
plt.ylabel('Predicted')
plt.show()
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2. Principle Component Analysis

2.1. The main idea of PCA

The previous section gave us a glimpse into the type of regression model which
was required to define quantitative characteristics describing this model. And what if
there is no information neither about qualitative, nor quantitative characteristics of
regression? How should it look like in this case? The effective method of solving such
tasks is the Principle Component Analysis – PCA.

PCA is one of the main way to reduce data dimension with minimum loss of infor-
mation, developed by Karl Pearson in 1901. Basically, it is applied in many areas,
such as: pattern recognition, computer sight, data compression, etc. PCA comes down
to the calculation of eigenvectors and eigenvalues of the input data covariation ma-
trix. Sometimes the PCA method is called the Hotelling transform (the Karhunen-
-Loeve Transform KLT) (see, for example, Bober et al. 2003). Enriching knowledge
on PCA can be found for instance in Jolliffe, Li and Wang, Tanwar et. al., Tipping and
Bishop, (see Hand 2011, Jolliffe 2002, Li, Wang 2005, Tanwar et al. 2018, Tipping,
Bishop 1999).

Let’s take the PCA method into account. At the beginning we will find the con-
stant μ, which in the best way describes input data

( ) ( )2

1
.min

n

i
i

x
μ=

ε μ = − μ →∑

In order to find the minimum we will equate the derivative to zero and find the
value μ delivering the minimum

( ) ( )
1 1 1 1 1

0 .
1

2
n n n n n

i i i i
i i i i i

d
x x n x x

d n= = = = =
ε μ = − − μ = ⇒ μ = ⇒ μ = ⇒ μ =

μ ∑ ∑ ∑ ∑ ∑
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Furthermore, we will carry out mean-centering, that is, we will redefine original
values as follows new old ,x x= − μ  i.e. from each value xi the mean μ is subtracted. It is
clear, that new data have the average equal to zero.

( )( ) ( ) ( ) 0.E X E X E X E X− = − =

As a matter of fact, we made parallel translation in the existing coordinate system.
In the following section we assume that input data is centered. Not to mention

that, we are going to find the most faithful representation of data { }1, ..., nD x x=  in
some W subspace which has dimension k < n.

Let {e1, ..., ek} be orthonormal basis of W. Any vector from W can be written in the
form of linear combination of basis vectors, therefore for x1 it is possible to determine

vector in the following form 1,1
.

k
i ii
e= α∑  The error between them (see Fig. 2.1) is cal-

culated as follows

2

1 1 1, 1 1, 1 1,
1 1 12

.,
k k k

i i i i i i
i i i

x e x e x e
= = =

ε = − α = − α − α∑ ∑ ∑

Fig. 2.1. Vector error recovery illustration

To find the integral error, we need to sum the quantities errors over all xj, so the
total error is

( )
2

1 1,1

unkno

, ,
1 1 1 2ws

, ..., , , ...,
= = =

ε α α = ε = − α∑ ∑ ∑
�����������

n n k

k n k j j j i i
j j i

e e x e (2.1)

To minimize the error, it is necessary to calculate the partial derivative of an above
mentioned function with respect to the coefficients and consider restrictions for or-
thogonality {e1, ..., ek}. At the beginning, we will simplify the expression (2.1).
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( )
2
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1 1 2
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2 .
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k n k j j i i
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n n k n k
T

j j j i i j i
j j i j i
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T

j j i j i j i
j j i j i

e e x e

x x e

x x e
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= = = = =

= = = = =

ε α α = − α

= − α + α =

= − α + α

=∑ ∑

∑ ∑ ∑ ∑∑

∑ ∑∑ ∑∑

Then

( )1 1,1 , ,
,

, ..., , , ..., 2 .2T
k n k m l m l

m l
e e x e

∂ ε α α = − + α
∂α

The necessary and sufficient condition for the extremum will take the following
form

, ,2 2 0 .T T
m l m l m l m lx e x e− + α = ⇒ α =

Thus, the error (2.1) will be described in the form

( ) ( ) ( )22
1 2

1 1 1 1 1
, .. .., 2

n n k n k
T T T

k j j i j i j i
j j i j i

e e x x e x e x e
= = = = =

ε = − +∑ ∑∑ ∑∑

After simplifying the equation (2.1), we receive

( ) ( )22
1 2

1 1 1
, ...,

n n k
T

k j j i
j j i

e e x x e
= = =

ε = −∑ ∑∑ (2.2)

Taking into account that , and , , ,Ta b a b b a a b= =  we obtain

( ) ( )( ) ( )( ) ( )2
,T T T T T T Ta b a b a b b a a b b aa b= = =
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therefore

( ) ( )2 2
1 2 2

1 1 1 1 1
,, ...,

n k n n k
T T T

k j i j j i j i i
j i j j i

e e x e x x e x e Se
= = = = =

⎛ ⎞
⎜ ⎟ε = − = −
⎜ ⎟⎝ ⎠

∑ ∑ ∑ ∑ ∑

where ( )1
n T

j jj
S x x=

= ∑  is the covariation matrix.

Next, the error ( ) 2
1 1 12
, ...,

n k T
k j i ij i

e e x e Se= =ε = −∑ ∑  will be minimized under

the condition 1T
i ie e =  for all i. Using the method of indefinite Lagrange multipliers, we

enter multipliers λ1, ..., λk and, noticing that 
2

1 2
const,

n
jj

x= ≡∑  we can describe the
objective function

( ) ( )1
1 1

, ..., 1 .
= =

λ = − λ −∑ ∑
k k

T T
k i i i i i

i i

e e e Se e e

It is worth pointing out that ( ) ( ) ( ) , 2Td dX X X d dX X X X⋅ = ⋅ =  and if A is

a symmetric matrix, then ( ) ( ) 2 .Td dX X AX AX⋅ =  As the result, we get

( )1, ..., 2 2 0,
∂ λ = − λ =

∂ k m m m
m

e e Se e
e

that is, .= λm m mSe e  Thus, it is necessary to find the solution of the equation ( ) 0− λ =S I e
(here I is an identity matrix) that determine λm as eigenvalues and em as eigenvectors
of the covariation matrix of S.

In this case, the error takes the following form

( ) 2 22
1 22 2

1 1 1 1
, ...,

n k n k

k j i i j i
j i j i

e e x e x
= = = =

ε = − λ = − λ∑ ∑ ∑ ∑ (2.3)

Minimization (2.3) consists in the selection k of the greatest eigenvalues and its
corresponding eigenvectors of covariance matrix S. The bigger eigenvalue of the
matrix S gives the bigger variation in the direction to the corresponding eigenvector.
This result can be reformulated as follows – the projection X on the k – dimension
subspace provides the greatest variation. Thus, the PCA can be treated as follows: we
take orthogonal basis and rotate it on one of the directions as long as we do not receive
the maximum variation. We fix this direction and we rotate the others, until we find the
second direction and so on.
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Let {e1, ..., en}, all eigenvectors of S matrix, be ordered in respect to the corre-

sponding eigenvalue, then for any

, ,1 1 , ,

error

1 1 ,
1

approximation

.+ +
=

= α = α +…+ α + α +…+ α∑
��������

�����������

�

n

i i j j i i k k i k k i n n
j

x e e e e e

The coefficients ,
T

m l m lx eα =  are the coordinates of the main components, for the

greater value k gives the best approximation. At the same time, the main components

are ordered according to the degree of the importance, that is, more important at the

beginning and less important at the end.

Let’s look at the algorithm of PCA.

Let start with input data { }0 0
1, ..., ,nD x x=  where each of vectors 0

ix  has dimension
of N

1. Let’s find the average ( ) 0
1

1 .
n

ii
n x=μ = ∑

2. Let’s subtract the average from each vector 0 .i ix x= − μ

3. Let’s find the covariation matrix 
1

.
n T

j jj
S x x=

= ∑
4. Let’s calculate eigenvectors {e1, ..., ek}, corresponding to the k greatest eigenval-

ues of S.
5. Let {e1, ..., ek} form the matrix E = [e1 ... ek].

6. Then the closest approximation of x is ETx.

Let’s review the example.

The set of data ( ) ( )( )0 0 0 0 0
1 1 8 8, , ..., ,D x y x y  is determined by the Table 2.1. Its graph-

ic illustration are points on the plane shown in Figure 2.2.
Let’s find mean value μ = (4.5, 4.375), then after centering data D will take the

form as mention in Table 2.2 and shown in Figure 2.3.

Table 2.1

Input data

x 1 2 3 4 5 6 7 8 

y 2 3 2 4 4 7 6 7 
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Fig. 2.2. The input data

Table 2.2

The centered data

Fig. 2.3. A parallel shift combining of origin data

x –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 

y –2.375 –1.375 –2.375 –0.375 –0.375 2.625 1.625 2.625 
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Then:

8

1,1
1

, 42,i i
i

s x x x x
=

= = =∑

8

2,1 1,2
1

, 32.5,i i
i

s s x y x y
=

= = = =∑

8

2,2
1

, 29.875,i i
i

s y y y y
=

= = =∑

and the covariation matrix can be written as follows

1,1 1,2

2,1 2,2

42 32.5
.

32.5 29.875

s s
S

s s

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Solving the equation

( )( ) ( )2
42 32.5

0 42 29.875 32.5 0,
32.5 29.875

− λ
= ⇔ − λ − λ − =

− λ

we receive eigenvalues 1 268.99810959, 2.876890413.λ = λ =

For determining the eigenvectors e1 = (e1,1, e1,2)T and e2 = (e2,1, e2,2)T let’s find
any uncommon solution of the following system:

( )
( )

1,1 1 1,1 1,2 1,2

1,2 1,1 2,2 1 1,2

0,

0,

s e s e

s e s e

⎧ − λ + =⎪
⎨
⎪ + − λ =⎩

and, respectively, for second eigenvalues:

( )
( )

1,1 2 2,1 1,2 2,2

1,2 2,1 2,2 2 2,2

0,

0.

s e s e

s e s e

⎧ − λ + =⎪
⎨
⎪ + − λ =⎩
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Under the eigenvalue λ in the both system of equations the main determinant is
equal zero. So in both cases the equations are linearly dependent. For finding the solutions
it is necessary to take any nonzero values for first unknown and the second unknown
determines from the one of equation respectively to each system of equations. There-
fore for the example 1,1 1,21, 0.8307110643e e= =  and 2,1 2,21, 1.203787987.e e= = −

Thus, the vector 1 (1, 0.8307110643)Te =  corresponds to the eigenvalue

1 68.99810959,λ =  and the value 2 2.876890413λ =  corresponds the vector

2 (1, 1.20378798 .7)Te = −  The bigger eigenvalue corresponds the greater principal direc-
tion. After normalizing eigenvectors to unit length, we get e1 = (0.7692123649,
0.6389932223)T and e2 = (0.6389932223, –0.76922123648)T.

It is necessary to determine the first main component 1 1
Tz e D=  (see Tab. 2.3).

Table 2.3

The first main component

Respectively, the second main component 2 2
Tz e D=  will take the form as included

within Table 2.4.

Table 2.4

The second main component

Let’s point out that for receiving a result for input data (uncentered) it is neces-
sary to add the corresponding mean value.

The recovery of data referring to first main component (that is projections of
input data to principal direction) will take the form 1,1 1, 1 1.2 1, 2,i i i ix e z y e z= + μ = + μ
(see Tab. 2.5 and Fig. 2.4).

Table 2.5

The input data recovered on the first main the component

1z  –4.20985 –2.80164 –2.67142 –0.62428 0.14498 2.83117 2.96139 4.3696 

2z  –0.4096 –0.53982 0.86839 –0.03104 0.60795 –1.0607 0.34751 0.21729 

0.769 × z1 + 4.5 1.26174 2.3449 2.4451 4.0198 4.61158 6.6778 6.778 7.8611 

0.639 × z1 + 4.375 1.6849 2.5848 2.668 3.9761 4.4676 6.1841 6.2673 7.1671 
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Fig. 2.4. The data presentation of the main components (in Python):
 a) the first component; b) the second component

2.2. An iteration scheme of PCA calculating

The described above method of determining the principal component is rath-
er resource-intensive and unstable, especially if eigenvalues of the matrix are close
to zero.

Basically, more effective is use of the iterative method of principal component.
To achieve this aim, we can consider the task (2.1) from a different point of view.

a)

b)
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For i=1 case, the task (2.1) comes down to definition referring to the first compo-
nent e1 which recovers all input data {x1, ..., xn} the most efficiently.

( ) 2
1 1,1 ,1 ,1 1 2

1
, , ..., min

n

n j j
j

e e
=

ε α α = −α →∑ (2.4)

on all e1 and { },1 1

n
i i=

α  under the condition 2
,11

1.
n

ii= α =∑
If { },1 1

n
i i=

α	  and 1e	  is the solution of this task and ,1 1j j jx x a eΔ = − 	 	  – the error of
data recovery based on the first main component, solving the following problem

2
,2 2 2

1
min

n

jj
i

x e
=

− α →Δ∑

on all e2 and { },2 1

n
i i=

α  under the condition 2
,21

1,
n

ii= α =∑  we receive the second main

component 2e	  and corresponding vector { },2 1

n
i i=

α	  etc.

At fixed { },1 1

n
i i=

α  the problem (2.4) can be solved by the least-squares method.

Knowing that the objective function represents the quadratic functional, the necessary
and sufficient condition of the extremum are identical. Thus, the solution of the task
comes down to solving a following equation

( ) ( ) 2
1 1,1 ,1 ,1 1 ,1 ,1 ,1 1

1 1 1 1
, , ..., 2 2 .

n n n

n j j j j j j
j j j

e x e x e
e = = =

⎛ ⎞∂ ⎜ ⎟ε α α = − − α α = − α − α
⎜ ⎟∂ ⎝ ⎠

∑ ∑ ∑

From here we receive

,1
1

1
2
,1

1

.

n

j j
j

n

j
j

x

e
=

=

α

=
α

∑

∑

Considering the rationing condition unit, that is 2
,11

1,
n

ii= α =∑  we get

1 ,1
1

.
n

j j
j

e x
=

= α∑
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We can take the following step proceeding on the assumption that in the task (2.4)
we know the component e1. Also, it is required to find the extremum on { },1 1

n
i i=

α

( ) ( ) ( )1 1,1 ,1 ,1 1 1 1 ,1 1 1
,1

, , ..., 2 2 , , 0,ne x e e x e e eν ν ν ν
ν

∂ ε α α = − − α = − − α =
∂α

that is

1
,1

1 1

,
,

,

x e

e e
ν

να =

where, as usual ,x y  is scalar product of vectors x and y.

Further, including known { },1 1
,

n
i i=

α  we repeat all process. Moreover there will be no
stabilization of the error yet. After getting e1 let’s consider the first main component 1.e	

Then ,1 1j j jx x eΔ = − α	 	  – error recovery of data of the first main component.
Applying this algorithm to the error recovery Δxj, we find the second main compo-

nent e2 together with coefficients ,2,jα  etc.
Let’s look at the algorithm of this method.
At the beginning we center data, subtracting the mean value from input data and

further we assume that data are averagely equal to zero.

1. Let’s put number of iteration ν = 1.
2. We choose starting values ,2,jα  for example, let all of them be equal among them-

selves, that is ,1 1 , 1, 2, ..., .i n i nνα = =

3. We calculate 1 ,11
.

n
j jj

e xν ν
=

= α∑
4. Further we find 1 1 1, , ,i ix e e eν ν νβ =  and, normalizing it to unit length, we receive

1
,1

2

1

.i
i n

j
j

ν+

=

β
α =

β∑

5. Next we take v = v + 1.
6. We perform the inspection of stop criterion i.e., as stabilization of coefficients

{ },1 1
,

n
i

i

ν
=

α  stabilization main components 1,eν  or in advance check the set fixed

number of iterations. If the condition of the repetitive process is not satisfied,
then we pass to point 3.
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Let’s illustrate the iteration scheme of looking for the principal components on
the same example which is stated above.

For already centered data (see Table 2.2) we will give several iterations. So, let
in the beginning ν = 1 and 1

,1 1 2, 1, 2.i iα = =  Calculating 1 1 1
1, 1,1 2,1 ,j j je x y= α + α  we

receive the first approximation shown in Table 2.6.

Table 2.6

First approximation the main component

Further we will calculate ( )1 1 1
1 1 1, , 0.7697, 0.64447i ix e e eβ = =  and after the

normalization we receive

( )2
,1 2 2

1 2

0.7667, 0.64343 .i
i

β
α = =

β + β

Thus, after the first iteration approximate values of input data will be equal
2 1 2 1
1,1 1, 1 2,1 1, 2,i i i ix e y e= α + μ = α + μ��  (compare the result with Table 2.7).

Table 2.7

The input data recovered on first approximation main components

After ten iterations, we receive 11 10 11 10
1,1 1, 1 2,1 1, 2,i i i ix e y e= α + μ = α + μ��  (see Table 2.8

with Figure 2.5 and compare the result with Table 2.5 with Figure 2.4).

Table 2.8

The input data recovered on the tenth iteration of approximating main components

1
1e  –4.1542 –2.740 –2.740 –0.619 0.088 2.917 2.917 4.33 

�x  1.3148 2.399 2.399 4.0256 4.5678 6.736 6.736 7.82 

�y  1.702 2.612 2.612 3.977 4.4319 6.2517 6.2517 7.172 

�x  1.2617 2.3449 2.445 4.02 4.6115 6.6778 6.7778 7.861 

�y  1.685 2.585 2.668 3.976 4.468 6.1841 6.2673 7.1671 
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Fig. 2.5. Data presentation recovered on the tenth iteration
of approximating main components

2.3. Examples in Python

Example 1

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 2.1.1
# PCA (example dataset)
# Data from table 2.1
# # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # #
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# read data
x = [1,2,3,4,5,6,7,8]
y = [2,3,2,4,4,7,6,7]

plt.scatter(x,y,color='blue')
plt.xlabel('x')
plt.ylabel('y')

dane = pd.DataFrame({
                'x1': np.array(x),
                'y1': np.array(y),
                })
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X = dane[['x1','y1']]

cov_mat = (X-np.mean(X)).T.dot((X-np.mean(X)))
print('Covariance matrix \n%s' %cov_mat)

eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)

components = eig_vecs.T.dot((X-np.mean(X)).T)
print('Main component \n%s' %components)

plt.close()     # a new diagram
comp_11 = eig_vecs[0][0]*components[0] + np.repeat(np.mean(x),8)
comp_12 = eig_vecs[1][0]*components[0] + np.repeat(np.mean(y),8)

plt.scatter(comp_11,comp_12,color='blue')
plt.axis([0, 9, 0, 8])
plt.xlabel('x')
plt.ylabel('y')

comp_21 = eig_vecs[0][1]*components[1] + np.repeat(np.mean(x),8)
comp_22 = eig_vecs[1][1]*components[1] + np.repeat(np.mean(y),8)

plt.scatter(comp_21,comp_22,color='red')
plt.show()



46

Example 2

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 2.1.2
# PCA (example dataset)
# Data from table 2.1
# # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # #
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import decomposition

# read data
x = [1,2,3,4,5,6,7,8]
y = [2,3,2,4,4,7,6,7]
dane = pd.DataFrame({
                'x1': np.array(x),
                'y1': np.array(y),
                })
X = dane[['x1','y1']]

pca = decomposition.PCA(n_components=2)
pca.fit(X)

Component = pca.fit_transform(X)
print('Components: \n%s' %Component)

Example 3

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 2.1.3
# PCA (example dataset)
# Dataset from table 2.2
# Iterative method
# # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # #

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# read data
x = [1,2,3,4,5,6,7,8]
y = [2,3,2,4,4,7,6,7]
# data from table 2.2
x1 = x - np.mean(x)
y1 = y - np.mean(y)
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dane = pd.DataFrame({
                'x1': np.array(x1),
                'y1': np.array(y1),
                })
X = dane[['x1','y1']]

# declaration the empty variable
alfa = [ ]
e = [ ]
beta = [ ]

alfa.append( np.array([1/2**(0.5),1/2**(0.5)]))
e.append( alfa[0].dot(X.T) )

n = 10
for i in range(n):

beta.append( np.array( [X['x1'].dot(e[i])/e[i].dot(e[i]),X['y1'].dot(e[i])/e[i].dot(e[i])]) )
alfa.append( beta[i]/(sum(beta[i]*beta[i])**0.5))
e.append( alfa[i+1].dot(X.T) )

comp_1 = alfa[10][0]*e[10] + np.mean(x)
comp_2 = alfa[10][1]*e[10] + np.mean(y)

plt.scatter(comp_1,comp_2,color='blue')
plt.axis([0, 9, 0, 8])
plt.xlabel('x')
plt.ylabel('y')
plt.show()



48

2.4. Optimum transition from the RGB model
to optimum three-component model

Let’s have one example of use of the PCA in such area as computer graphics. Here
outlining the transfer of the image from space of equal color characteristics into
space of unequal ones is vital. All images are visualized with use of mixing equal color
component – red, green and blue, which is called the RGB model. As unequal color com-
ponent there are three components is used: value of illumination (the luminescent
component), the characteristic of warm colors and the characteristic of cold shape.
The avail unequal color component is used for compression of images and video flows
and in each of the three components it uses the method of compression (see, for
example, Archambea et al. 2008, Scholkopf et al. 1998, Tanwar et al. 2018, Idris 2014,
Pedregosa et al. 2011).

It is possible to approach the problem of unequal color space creation from a different
perspective, regarding the maximum informational content of everyone components.
Let’s apply the method of principal component to receive unequal three-component
model of the root-mean-square error of recovery of the initial image, optimum from
the point of view of minimization. That is, the first of the received color component
will carry the most information about the image among all received color components,
and the second will contain the most information among the remaining.

Thus, in our terminology, the task (2.1) will take the following form

2 2 23 3 3

, , ,
1 1 12 2 2

min,r i i g i i b i i
i i i

R e G e B e
= = =

− α + − α + − α →∑ ∑ ∑

where the minimum undertakes on all , , ,, , and ,r i g i b i ieα α α  i = 1, 2, 3.

As data we can consider the test image Lena shown in Figure 2.6a.
Applying the principal components method, we receive

1

2

3

0.767785 0.45439 0.4517034

0.6164395 0.716085 0.3274513 .

0.6164395 0.716085 0.3274513

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

R e

G e

B e
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Fig. 2.6. Test image Lena (a); the image Lena in original state
and restored in 5, 25, 125 components (b)

a)

b)
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Here, in the first column of the matrix, there are coefficients αr,1, αr,2, αr,3, in the
second αg,1, αg,2, αg,3 and in the third αb,1, αb,2, αb,3. Then recovery of the test image
after one component can be written down as follows:

, ,

, ,

, ,

,0.767785

0.45439

0.451 3

,

,70 4

i j i j

i j i j

i j i j

R Y

G Y

B Y

=

=

=

where Yi, j – values of the first main components e1, corresponding to pixel with coordi-
nates (i, j).

Also, we can compress an image using PCA without a significant loss of its vari-
ance. The earlier in this section we have demonstrated using PCA to compress high
dimensional data to lower dimensional data. It is worth mentioning that PCA can also
take the compressed representation of the data (lower dimensional data) back to an
approximation of the original high dimensional data. If you are interested in the code
that produces the image in Figure 2.6b, check out the example Python code given below.

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Example 2.4.1
# Example for image reconstruction from compressed representation
# Principal Component Analysis in an image with Python, scikit-learn and scikit-image
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

from sklearn.decomposition import PCA
from pylab import *
from skimage import data, io, color
import matplotlib.pyplot as plt
from matplotlib import gridspec

file = "Lenna.png"
lenna = io.imread(file, as_grey=True)
gs = gridspec.GridSpec(2, 2, width_ratios=[1, 1])

fig = plt.figure(figsize=(8, 8))
fig.subplots_adjust(hspace=0.4, wspace=0.4)

plt.subplot(gs[0])
io.imshow(lenna)
xlabel('Original Image')
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for i in range(1, 4):
n_comp = 5 ** i
pca = PCA(n_components=n_comp)
pca.fit(lenna)
lenna_pca = pca.fit_transform(lenna)
lenna_restored = pca.inverse_transform(lenna_pca)
plt.subplot(gs[i])
io.imshow(lenna_restored)
xlabel('Restored image n_components = %s' % n_comp)
print('Variance retained %s %%' % (

(1 - sum(pca.explained_variance_ratio_) / size(pca.explained_variance_ratio_)) * 100))
print('Compression Ratio %s %%' % (float(size(lenna_pca)) / size(lenna) * 100))

show()

2.5. Fisher linear discriminant analysis

PCA is the most accurate representation of the data in the space of smaller di-
mension.

The Fisher linear discriminant analysis (FLDA) in its concept has a different na-
ture. More information about FLDA the reader can find for example in the work
Bober et al., Fisher, Iatan (see Bober et al. 2003, Fisher 1936, Itan 2010, Pedregosa
et al. 2011).

The main idea of FLDA is to find a hyperplane projection which allows to sepa-
rate to separate classes of data the most accurately (see Fig. 2.7).

Fig. 2.7. Separation of data classes: a) a poor separation of point classes;
b) a good separation of point classes

Suppose we have points x1, x2, ..., xn of the two classes in the measurements d, of
which n1 points belong to the same class and n2 to the second one.

a) b)
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For the unit vector ν�  we can construct projections of these points on the direction
of the vector (see Fig. 2.8).

Fig. 2.8. The projection of a point on the direction of a vector

Then, the scalar product T
ixν�  coincides with the distance from the origin to the

point of projection xi in the direction of the vector ,ν�  in other words, T
ixν�  is a projec-

tion xi to the space of lower dimension.
We estimate the separation degree of the projections of different classes. Let μ1

and μ2 be the average values of the first and second classes, and 1 2,μ μ� �  be the mean
values of the projections of the first and second classes, then

{ } { }1 1 1 1
1 1

1 1
| |T T T

i i i ix x c x x c
n n

⎛ ⎞
μ = ∈ = ∈ = μ⎜ ⎟ν ν

⎝ ⎠
ν∑ ∑� � �

�

and correspondingly, 2 2.Tνμ = μ�
�

A value 1 2μ − μ� �  can be a good measure to separate classes (see Fig. 2.9).

Fig. 2.9. Value 1 2μ − μ� �  as a measure of the separation of data classes
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It’s worth mentioning that, the horizontal axis for a given image separates the
classes, more efficiently, because

1 2 1 2 .μ − μ > μ − μ	 	

On the other hand, this characteristic is shared by only classes centers, that is not
always the good separation of the classes themselves.

We need to normalize 1 2μ − μ	 	  by a factor which is proportional to the scatter of
the data class.

So, let the data be available z1, z2, ..., zn. Their average value can be calculat-
ed by the formula ( ) 1

1
n

z ii
n z=μ = ∑  and their variance can be determined by

( )2
1

.
n

i zi
s z== − μ∑

Thus, the spread is simply equal to the product of the variance by n (the number

of samples), that is, the dispersion from scatter is different only in the scale. Fisher

suggested the following decision i.e. normalization 1 2μ − μ	 	  by data dispersion.

Let T
i iy v x= �

 be the projection of xi to the direction of the vector .v



Then scatter projections of the first class is ( ){ }22
1 1 1|i is y x c= − μ ∈∑� �  and sec-

ond ( ){ }22
2 2 2| .i is y x c= − μ ∈∑� �

The jointly normalization for both classes is carried out. Then Fisher’s linear dis-
criminant is a hyperplane whose direction v


  maximizes the value

( )
2

1 2
2 2
1 2

.J v
s s

μ − μ
=

+

	 	

	 	

All we need to do now is to express the J explicitly as a function of ν and maximize
its value.

We define matrices for estimating the spread of the initial data (to the projection)

( )( ){ }1 1 1 1|T
i i iS x x x c= − μ − μ ∈∑  and ( )( ){ }2 2 2 2| .T

i i iS x x x c= − μ − μ ∈∑

Now we can define the scattering matrix between classes 1 2.wS S S= +
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Hence, noting that ( ){ }22
1 1 1|i is y x c= − μ ∈∑� �  and taking into account T

i iy v x= �

and 1 1
Tvμ = μ�

	  we get

( ) ( )( ) ( )( )

( )( ) ( )( )

( )( )( ){ }

22
1 1 1 1 1 1

1 1 1

1 1 1 1

| |

|

| .

⎧ ⎫= − μ ∈ = − μ − μ ∈ =⎨ ⎬
⎩ ⎭

⎧ ⎫
= − μ −μ ∈ =⎨ ⎬

⎩ ⎭

= −

⎧ ⎫
⎨ ⎬
⎩ ⎭

μ −μ ∈ =

∑ ∑

∑

∑

� � � �
	

� �

� � � �

TT T T T
i i i i i

TT T
i i i

TT T
i i i

s v x v x c v x v x x c

x v x v x c

v x x v x c v S v

Similarly, 2
2 2

Ts v S v= � �
	  and correspondingly, 2 2

1 2 1 2 .T T T
ws s v S v v S v v S v+ = + =� � � � � �

	 	

We can define the scattering matrix between classes ( )( )1 2 1 2 .T
BS = μ − μ μ − μ

Besides

( ) ( )( )
22

1 2 1 2 1 2 1 2 .TT T T T
Bv v v v v S vμ − μ = μ − μ = μ − μ μ − μ =

� � � � � �
	 	

With these constructions, the objective function can be written as follows

( )
2

1 2
2 2
1 2

.
T

B
T

w

v S v
J v

s s v S v

μ − μ
= =

+

� �
	 	

� �
	 	

Then simply find the extremum of this function

( )
( )

( ) ( )

( )

2

2
2 2

0.

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
= =

−
= =

� � � � � � � �

� �

� � � � � �

� �

T T T T
B w w B

T
w

T T
B w w B

T
w

d d
v S v v S v v S v v S v

dv dvd
J v

dv v S v

S v v S v S v v S v

v S v
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Then equating the numerator of the fraction to zero we get

( ) ( ) 0,T T
B w w BS v v S v S v v S v− =

 
 
 
 
 


or what is the same

( ) ( ) ( ) ( )
0,

T T TT
B w w B w BB w

B wT T T
w w w

S v v S v S v v S v S v v S vS v v S v
S v S v

v S v v S v v S v

−
= − = − λ =

� � � � � � � � �� � �
� �

� � � � � �

where .
T

B
T

w

v S v

v S v
λ =


 



 


Thus the discriminant search problem is reduced to the problem of finding the
eigenvectors and eigenvalues, if Sw has full rank, i.e., there exist its inverse, then

1 .B w w BS v S v S S v v−= λ ⇒ = λ� � � �

For any vector x, consider SB x

( ) ( )( ) ( )1 2 1 2 1 2
T

BS x x= μ − μ μ − μ = α μ − μ  where ( )1 2 .T xα = μ − μ

We obtain as a solution the sought eigenvalues and eigenvectors

( )( ) ( )( ) ( )( )1 1 1 1
1 2 1 2 1 2w B w w w

v v

S S S S S− − − −μ − μ = α μ − μ = α μ − μ
� �

������� �������

where ( )( )1
1 2 .wv S−= μ − μ

�

Let’s consider an example.
Suppose there are two classes c1 = [(1,2), (2,3), (3,3), (4,5),(5,5)] and c2 = [(1,0),

(2,1), (3,1), (3,2), (5,3), (6,5)] (see Fig. 2.10).
PCA allows you to get directions with the largest spread of data, which does not

allow to split classes.
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Fig. 2.10. The graphic interpretation of classes from example

At first, we find the average values μ1 = [3, 3.6] and μ2 = [3.3, 2]. We find the
scatter matrix

( ) ( )1 1 2 2
10 8.0 17.3 16.0

4 cov 4 cov .
8.0 7.2 16.0 16.0

S c S c
⎡ ⎤ ⎡ ⎤

= ⋅ = ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

And for both classes

1 2
27.3 24.0

.
24.0 23.2

wS S S
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

The matrix is invertible and

1 0.39 0.41
.

0.41 0.47
wS− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦

The vector determining the optimal direction v



 (see Fig. 2.11).

( )1
1 2

0.79
.

0.89wv S− −⎡ ⎤
= μ − μ = ⎢ ⎥

⎣ ⎦

�
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Fig. 2.11. The vector determining the optimal direction v
�

The final step is the calculation of one-dimensional vector y, and, respectively, the
separation of classes:

[ ] [ ]1 1
1 2 3 4 5

0.65, 0.73 0.81 ... 0.4 ,
2 3 3 5 5

⎡ ⎤
= = − =⎢ ⎥

⎣ ⎦

�T TY v c

[ ] [ ]2 2
1 2 3 3 5 6

0.65, 0.73 0.65 ... 0.25 .
0 1 1 2 3 5

⎡ ⎤
= = − = −⎢ ⎥

⎣ ⎦

�T TY v c

2.6. Multidimensional discriminant analysis (MDA)

MDA can be generalized for the case of several classes. In this case, the classes
can be reduced to the dimension of 1, 2, 3, ..., s – 1. Let’s consider the projection xi on
a linear subspace ,T

i iy V x=  where V is called the projection matrix.
Let ni be the number of elements of the i-th class, μi the average value of this class

and μ the average value of all elements. Then

1
{ | }i i

i
x x c

n
μ = ∈∑  and 

1
.

1 n

i
i

x
n =

μ = ∑

If we write the objective function

( )
( )
( )

det
,

det

T
B

T
w

V S V
J v

V S V
=
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then scatter matrix can look as follows

( )( ){ }
1 1

|
c c

T
w i k i k i k i

i i

S S x x x C
= =

= = − μ − μ ∈∑ ∑∑

and the matrix of dispersion between classes can take the following form

( )( )
1

.
c

T
B i i i

i

S n
=

= μ − μ μ − μ∑

Suppose that the matrix has the maximum rank = c – 1, then the problem is re-
duced to the solution of the eigenvalues equation

.B wS V S V= λ

Then the optimal projection would be on vector, which corresponds to the maxi-
mum eigenvalue.

Parametric methods and discriminant functions

Using a parametric method, we assume availability of information on the form of
the density of distribution of classes according to the known ( ) ( )1 1 2 2| , | , ...p x p xθ θ
where θ1, θ2, ... are parameter estimation used in Bayesian classifier to separate classes.
Using the linear discriminant functions ( ) ( )1 2, , ...θ θ� �  with parameters θ1, θ2, ... also
allows you to split data into classes.

Theoretically, the Bayesian classifier minimizes the risks, but in practice we do not
have information about the density function. Fortunately, this is not so important for
the separation of classes. In fact the exact definition of the density functions parame-
ters is much more complicated than the estimation of exact discriminant functions.
Therefore, the estimation of densities is often skipped. Naturally, the discriminant
function may not be necessarily linear, but linear methods are quite popular and they
should be considered, at least for the reason that the linear discriminant functions are
optimal for Gaussian distributions with equal covariance.

Discriminant function is linear if it can be written as follows: g(x) = wTx + w0,
where w is the weight vector and w0 is called an offset or threshold. The situation wherein
the discriminant condition takes a form g(x) > 0 ⇒ x ∈ Class [1], g(x)<0 ⇒ x ∈ Class [2],
g(x) = 0 ⇒ x ∈ bound (see Fig. 2.12) is desirabled.
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Fig. 2.12. The frontier class separation

Furthermore w determines the orientation of the separating hyperplane, and w0

places surface location solutions.
For the case of several classes the situation is similar. We can define m linear dis-

criminant functions in the following form

( ) 0, 1, 2, ..., ,T
i i ig x w x w i m= + =

an element x belongs to the class ci, if

( ) ( ), .i jg x g x j i≥ ∀ ≠

This classifier is called a linear machine. A linear machine splits space into k-classes,
and for elements of the i-th class the greatest value among all discriminant functions is
named function gi(x) For two classes ci, cj the dividing line between these sets is hyper-
plane hij determined by the relation

( ) ( ) ( ) ( )0 0 0 0 0.
TT T

i j i i j j i j i jg x g x w x w w x w w w x w w= ⇔ + = + ⇔ − + − =

In this way, the vector wi – wj is normal to hij and the distance from x to hij is equal
as follows

( ) ( ) ( )
, .i j

ij
i j

g x g x
d x h

w w

−
=

−

In addition, the linear machine gives the decomposition into convex sets

( ), 1 .i ix y C x y C∈ ⇒ α + − α ∈
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As the condition below is behaving

( ) ( ) ( ) ( )

( )( ) ( )( )

and

1 1 ,

i j i j

i j

j ig x g x g y g y

j ig x y g x y

∀ ≠ ≥ ≥ ⇒

∀ ≠ α + − α ≥ α + − α

the result of the linear machines are simply connected domains.
Therefore, the applicability of the linear machine is primarily limited to con-

ventional unimodal density p(x|θ). So for the sets shown on illustration below (see
Fig. 2.13), the linear machine obviously cannot work well.

Fig. 2.13. The result of a linear machine for a simply connected domain

Let’s rewrite a linear discriminant function ( ) 0
Tg x w x w= +  as

( ) ( )0 0
1 1

, , where , and .T T Tg x w w a y g y a w w y
x x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Then if ( ) 0
Tg x w x w= +  for vector [x1, ..., xd]T the equivalent challenge can take

the form ( ) Tg y a y=  for vector [1, x1, ..., xd]T and the condition for the separation of
classes can be written as follows

1

2

,

,

0

0

⎧ > ∀ ∈⎪
⎨
⎪ < ∀ ∈⎩

T
i i

T
i i

a y y c

a y y c
  or what is the same  

( )
1

20

,

.

0T
i i

T
i i

a y y c

a y y c

⎧ > ∀ ∈⎪
⎨

− > ∀ ∈⎪⎩

Thus, we need to find such a vector that for all elements yi(i = 1, ..., n) on one class
it fulfills the condition

( )

0
0.

d
kT

i k i
k

a y a y
=

= >∑
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There can be plenty of such vectors. Therefore we need to find a criterion for
selecting the best one.

Anyway, whatever the criteria for selection are, it is necessary to find its extrem-
um, say – a minimum. Below we give one fairly general algorithm for finding the
extremum – the method of gradient descent.

Suppose you need to find the minimum of a function of several variables
( ) ( )1 2, , ..., .dJ X J x x x=  As you know, in order to find extremum, we need to calculate

the derivative and equate it to zero. Here we determine the gradient and have the
equation

( ) ( ) ( )
1

, ..., 0.
T

d
J X J X J X

x x
⎡ ⎤∂ ∂ = ∇ =⎢ ⎥∂ ∂⎣ ⎦

As it is known, the gradient is a vector which points the direction of greatest
change of a function, respectively, ( )J X−∇  – is the direction of the greatest decrease.

Thus, in order to move from the point x(k) to the point where the value of the
objective function is lower, you need to shift to the gradient vector while the condition

( ) ( )( )k kJ xη ∇ > ε  is satisfied, where η(k) is parameter that regulates the speed and ac-

curacy of the algorithm, that is

( ) ( ) ( ) ( )1 .k k k
px x J a+ = − η ∇

Unfortunately, the gradient descent can find a local extremum but not a global one.

Perceptron principle

Let ( ) { }: 0T
M i iY a y a y= <  be the set of incorrectly classified elements for the

classifier with the vector a. Then the minimization of its quantity can be a criterion for
the quality of the classifier.

Take the objective function ( ) ( ){ }| ,= − ∈∑ T
p MJ a a y   y Y  then the condition is

satisfied when misclassification aTy < 0, i.e. Jp(a) ≥ 0. There we will have a  (just take
the sum of the distances between misclassified elements and the border (it is shown in
Fig. 2.14)).

Jp(a) is a piecewise linear function, which is applicable to the method of gradient
descent, then

( ) ( ){ }| .p MJ a y y Y∇ = − ∈∑
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Fig. 2.14. Incorrect classification of elements

To make a step in the direction of the gradient

( ) ( ) ( ) ( )1 .k k k
px x J a+ = − η ∇

And calculate the new value of the vector at this point

( ) ( ) ( ) { }1 | .k k k
Ma a y y Y+ = + η ∈∑

And for each incorrectly classified element we obtain

( ) ( ) ( )1 .k k k
Ma a y+ = + η

Geometric interpretation can be written as follows: ( )( ) 0
Tk

Ma y ≤  indicating that
the element yM is not on the side of the separating hyperplane, and the addition of
η(k)yM to a separating hyperplane moves in the right direction relative to the element yM.

Let’s consider the example. Table 2.9 contains the data for the example.

Table 2.9

Incoming data

A linear discriminant function that separates the classes is determined.
At first we convert x1, ..., xn to y1, ..., yn. Next 2i i iy y y c→ − ∀ ∈  expanding the space

on one dimension (see Tab. 2.10).

Name Visit Growth In class sleeping 
In the classroom 
chews the cud 

Class 

Peter 1 (true) 1 (true) –1 (false) –1 (false) A 

Lisa 1 (true) 1 (true) 1 (true) 1 (true) F 

John –1 (false) –1 (false) –1 (false) 1 (true) F 

Diana 1 (true) –1 (false) –1 (false) 1 (true) A 
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Table 2.10

Determined extras

Assuming that η(k) = 1 we obtain a(k+1) = a(k) + yM.
We choose ( ) [ ]1 0.25, 0.25, 0.25, 0.25, 0.25a =  as starting vector and check the re-

sulting classifier (see Tab. 2.11).

Table 2.11

The result of the classifier

Since we have misclassified item, we can modify the vector separating hyperplane
( ) ( )1k k

Ma a y+ = +

( ) ( ) [ ] [ ]

[ ]

2 1 0.25, 0.25, 0.25, 0.25, 0.25 1, 1, 1, 1, 1

0.75, 0.75, 0.75, 0.75, 0.75

= + = + − − − − − =

= − − − − −

Ma a y  

And we will continue checking (see Tab. 2.12).

Table 2.12

The next result of classifier

Name Extras Visit Growth In class 
sleeping 

In the classroom 
chews the cud 

Class 

Peter 1 1 (true) 1 (true) –1 (false) –1 (false) A 

Lisa –1 –1 (false) –1 (false) –1 (false) –1 (false) F 

John –1 1 (true) 1 (true) 1 (true) –1 (false) F 

Diana 1 1 (true) –1 (false) –1 (false) 1 (true) A 

 

Name aTy Classified 
incorrectly? 

Peter 0.25 ⋅ 1 + 0.25 ⋅ 1 + 0.25 ⋅ 1 +  0.25 ⋅ (– 1) + 0.25 ⋅ (– 1) < 0 false 

Lisa 0.25 ⋅ (– 1) + 0.25 ⋅ (– 1) + 0.25 ⋅ (– 1) + 0.25 ⋅ (– 1) + 0.25 ⋅ (– 1)  < 0 true 

John 0.25 ⋅ (– 1) + 0.25 ⋅ 1 + 0.25 ⋅ 1 + 0.25 ⋅ 1 + 0.25 ⋅ (– 1)  <? 0  incorrect 

Name aTy Classified 
incorrectly? 

John –0.75 ⋅ (– 1) – 0.75 ⋅ 1 – 0.75 ⋅ 1  – 0.75 ⋅ 1 – 0.75 ⋅ (– 1)  < 0 true 

Diana –0.75 ⋅ 1 – 0.75 ⋅ 1 – 0.75 ⋅ (– 1)   – 0.75 ⋅ (– 1)  – 0.75 ⋅ 1  <? 0 incorrect 
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Furthermore we modify

( ) ( ) [ ] [ ]

[ ]

3 2 0.75, 0.75, 0.75, 0.75, 0.75 1, 1, 1, 1, 1

1.75, 0.25, 0.25, 0.25, 1.75

= + = − − − − − + − − =

= − −

Ma a y

and we can verify the last element in Table 2.13.

Table 2.13

The last result of classifier

( ) ( ) [ ] [ ]

[ ]

4 3 1.75, 0.25, 0.25, 0.25, 1.75 1, 1, 1, 1, 1

0.75, 1.25, 0.75, 0.75, 0.75 .

= + = − − + − − =

= − − − −

Ma a y

Finally we verify the quality of the resulting classifier in Table 2.14.

Table 2.14

The quality of the resulting classifier

Thus the discriminant function has the following form

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 40.75 1.25 0.75 0.75 0.75 .g y y y y y y= − + − − −

And, going back to the original notation

( ) ( ) ( ) ( ) ( )1 2 3 41.25 0.75 0.75 0.75 0.75.g x x x x x= − − − −

Name aTy Classified 
incorrectly? 

Diana –1.75 ⋅ 1 +  0.25 ⋅ 1 +  0.25 ⋅ (–1) + 0.25 ⋅ (–1)  – 1.75 ⋅ 1  <?  0 incorrect 

Name aTy Classified 
incorrectly? 

Peter –0.75 ⋅ 1 + 1.25 ⋅ 1 – 0.75 ⋅ 1 – 0.75 ⋅ (– 1)  – 0.75 ⋅ (–1)  <  0 false 

Lisa –0.75 ⋅ (–1)  + 1.25 ⋅ (– 1)  – 0.75 ⋅ (–1)  –  0.75 ⋅ (–1)  – 0.75 ⋅ (–1)  <  0 false 

John –0.75 ⋅ (–1) + 1.25 ⋅ 1 – 0.75 ⋅ 1 – 0.75 ⋅ 1 – 0.75 ⋅ (–1)  <  0 false 

Diana –0.75 ⋅ 1 + 1.25 ⋅ 1 – 0.75 ⋅ (–1) – 0.75 ⋅ (–1) – 0.75 ⋅ 1 < 0 false 



65

Element belongs to the class A, if

( ) ( ) ( ) ( )1 2 3 41.25 0.75 0.75 0.75 0.75x x x x− − − >

and to the class F if

( ) ( ) ( ) ( )1 2 3 41.25 0.75 0.75 0.75 0.75.x x x x− − − <

Unfortunately, the condition of linear separation of sets is far from always satis-
fied. Consider an example shown in Figure 2.15.

Fig. 2.15. The separation of sets on two data classes

There are two classes Class [1]: [2, 1], [4, 3], [3, 5] and Class [2]: [1, 3], [5, 6].
By analogy with the previous example, let’s move to the new variables with the

expansion of the space dimension

[ ] [ ] [ ] [ ] [ ]1 2 3 4 51, 2, 1 , 1, 4, 3 , 1, 3, 5 , 1, 1, 3 , 1, 5, 6 .T T T T Ty y y y y= = = = − − − = − − −

Following the algorithm Perceptron, choose initialize vector ( ) [ ]1 1, 1, 1a =  and
thus separating hyperplane ( ) ( )1 2 1 0.x x+ + =

We fix step η = 1 and obtain the iterative solution ( ) ( )1 .k k
Ma a y+ = +  We check

the condition of separability performance classes:

( ) [ ] [ ]1
1 1, 1, 1 1, 2, 1 0 true,TTy a = ⋅ > −

( ) [ ] [ ]1
2 1, 1, 1 1, 4, 3 0 true,TTy a = ⋅ > −

( ) [ ] [ ]1
3 1, 1, 1 1, 3, 5 0 true,TTy a = ⋅ > −

( ) [ ] [ ]1
4 1, 1, 1 1, 1, 3 5 0 false.TTy a = ⋅ − − − = − < −
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We recalculate the normal vector separating hyperplane

( ) ( ) ] [ ] [2 1 1, 1, 1 1, 1, 3 0, 0, 2 .= + = + − − − = −⎡ ⎤⎣ ⎦Ma a y

Then

( ) [ ] [ ]2
5 0, 0, 2 1, 5, 5 12 0 true.= − ⋅ − − − = > −TTy a

Now, all over again

( ) [ ] [ ]2
1 0, 0, 2 1, 2, 1 0 false.= − ⋅ < −TTy a

We recalculate the vector again

( ) ( ) ] [ ] [3 2 0, 0, 2 1, 2, 1 1, 2, 1 .= + = − + = −⎡ ⎤⎣ ⎦Ma a y

And so on around the circle. It is clear that the algorithm converges.

You can change the perceptron learning step ( ) ( )1k kη = η  to find a more accurate
solution, if it exists. But it may not exist.

Using the method of least squares

One of the most popular approaches is using the least squares method, the basic
idea of which is to replace a system of inequalities by the system of equations.

If 1a = and aTyi = bi is the distance from the point yi on the hyperplane with
normal vector a, then all points of our classes satisfy the following system of equations

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1
1 1 1 9 9

1 1 0 1
1 12 2 2

0 1

.

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥⎧ = ⎢ ⎥ ⎢ ⎥⎢ ⎥⎪⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥⇒ = ⇔ =⎨ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥=⎪⎩ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

�

�


   � 

�

d

T
d

T
n n

d d d
n n n

y y y a b
a y b

a by y y
 Ya b

a y b a b
y y y

If matrix Y is not degenerate, then a = Y–1b. And if not, what then? Well, at least
we need to find some approximation.

Let’s ε = Ya – b, then we write the objective function as follows

( ) ( )22

1
.

n
T

i i
i

J a Ya b a y b
=

= − = −∑
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Hence

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

1 1

1

1

, ...,

2

2 2 0 .

T n
T

i i
d i

n
T T

i i i i
i

n
T T T T

i i i
i

dJ a d
J a J a J a a y b

a a da da

d
a y b a y b

da

a y b y Y Ya b Y Ya Y b

=

=

=

⎡ ⎤∂ ∂∇ = = = − =⎢ ⎥∂ ∂⎣ ⎦

= − − =

= − = − = ⇒ =

∑

∑

∑

The matrix YTY is not degenerate so we get ( ) 1
.T Ta Y Y Y b

−
=

The LSM procedure equivalent let us find the hyperplane that corresponds to the
available sample (usually called the learning sample) in the best way. But it can guaran-
tee to find a solution only if Ya > 0 that is, all the components of the vector Ya = [aTy1,
..., aTyn] are positive. In fact Ya ≈ Yb and Ya = [b1 + ε1, ..., bn + εn]T and it is not
necessary that all values εi are positive. Subsequently if 0i ib + ε >  then we obtain the
separation of the sets, and if not – (which is possible for elements which are located too
close to the separating hyperplane), the separation of the sets is impracticable.

Thus, in the case of a linearly inseparable classes, the LSM does not give a sepa-
rating hyperplane. There may be a temptation to draw a hyperplane so that the dis-
tance from the element to the separating hyperplane satisfies the condition, but this
still does not lead to the desired result, Suppose that we use βb instead of b. Hence if a*
is the LSM solution of Ya = b, then Ya = βb by the LSM can be

2 2 2 2argmin arg min argm .in
a a a

a a
Ya b Y b Y b a∗⎛ ⎞ ⎛ ⎞− β = β − ⇒ − = β⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠

So for every element Ya which is less than zero, 0,T
iy a <  we get ( ) 0.T

iy aβ <
Under assumption b1 = b2 = ... = bn = 1, the LSM leads to the Fisher’s linear

discriminant. Moreover when the sample tends to infinity, we obtain Bayes method
with distribution in the following form

( ) 1 2( | ) ( | ).Bg x P c x P c x= −

In order to evaluate the pros and cons of the LSM method, it is necessary to look
at a few examples.
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Example 1

Class [1] :[6, 9], [5, 7]; Class [2]: [5, 9], [0, 4] (see Fig. 2.16).
Draw “normalization” by adding one dimension

[ ] [ ] [ ] [ ]1 2 3 41, 6, 9 , 1, 5, 7 , 1, 5, 9 , 1, 0, 4 .T T T Ty y y y= = = − − − = − −

And, accordingly, we obtain the matrix

1 6 9
1 5 7

,
1 5 9
1 0 4

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
− − −⎢ ⎥

⎢ ⎥− −⎣ ⎦

 choose 

1
1
1
1

b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 and applying LSM, we obtain

[ ]2.7, 1.0, 0 9 .. Ta = −

Furthermore we receive [ ] [ ]0.4, 1.3, 0.6, 1.1 1, 1, 1, 1T TYa = ≠  and the condition
Ya > 0 gives separating hyperplane.

Fig. 2.16. The first example gives a separating hyperplane

Example 2

Class [1]: [ 6, 9], [5, 7]; Class [2]: [5, 9], [0, 10] (see Fig. 2.17).
Draw normalization by adding one dimension

[ ] [ ] [ ] [ ]1 2 3 41, 6, 9 , 1, 5, 7 , 1, 5, 9 , 1, 0, 10 .T T T Ty y y y= = = − − − = − −
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And, accordingly, we obtain the matrix

1 6 9
1 5 7

,
1 5 9
1 0 10

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
− − −⎢ ⎥

⎢ ⎥− −⎣ ⎦

 choose 

1
1
1
1

b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 and applying the LSM method, we obtain

[ ]3.2, 0.2, 0 4 .. Ta = −

Moreover from this we get [ ] [ ]0.2, 0.9, 0.04, 1.16 1, 1, 1, 1 ,T TYa = − ≠  but aTy3 < 0
and that does not allow receive the separating hyperplane.

Fig. 2.17. The second example does not give a separating hyperplane

Why do we get such a paradoxical result? Because the LSM is applied to all the
values of the sample, while minimizing the total distance, it makes the method suscep-
tible to “isolating points” and “noise”. But, using weights, i.e., giving the different
elements different “importance” of their classification, the result can be corrected by
getting an acceptable solution. Hence giving elements located far from separating hy-
perplane higher weights, we get the expected result.

Let’s choose b = [1, 1, 1, 10]T. Applying LSM, we obtain a = [–1.1, 1.7, –0.9]T and
next we get Ya = [0.9, 1.0, 0.8, 10.0]T ≠ [1, 1, 1, 10]T with result Ya > 0 (see Fig. 2.18).

Fig. 2.18. The second example with weighting factors

Note that, for large-dimensional system of equations, the finding a solution can
be difficult, especially under conditions where the value of the discriminant ma-
trix is close to zero. In this case it is sufficient to start a search for an approxi-
mate solution, using the gradient descent method. So, there is the objective function
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( ) ( )22
1

.
n T

i ii
J a Ya b a y b== − = −∑  Its gradient is ( ) ( )2 TJ a Y Ya b∇ = −  and, following

the slope of the gradient, we get each successive step of determining the weight vector
( ) ( ) ( ) ( ) ( ) ( ) ( )1 .k k k k k Ta a J a a Y Ya b+ = − η ∇ = − η −

If ( ) ( )1 ,k kη = η  then to obtain the exact solution of the least squares method it is
necessary to achieve the fulfillment of the condition ( ) 0.TY Ya b− =  Descent algo-
rithm always yields a solution, regardless of whether or not the matrix is invertible.

Widrow–Hoff procedure

Widrow–Hoff procedure (see Widrow, Hoff 1988) is developed in relation to the
“black box”, in which there are only linear relationships between inputs and outputs.
The learning procedure is based on minimizing errors in the process of suppling input
network of input images by using a gradient descent on the adjustable parameters of
the neural network.

In our case ( ) ( ) ( ) ( )( )1k k k kT
i i ia a y y a b+ = − η −  so, a rule Widrow–Hoff (delta rule)

provides vector correction a in the case when ( )kT
iy a  is not equal bi.

Ho-Kashyap procedure

The considered methods allow you to find the weight vector for linearly separable
classes, and if the tolerance vector b is selected randomly, the result of the least squares
method will be the minimization of expression 2.Ya b−  If the classes are separable,
there exist a and b, so that Ya = b > 0. The problem is that b is not known in advance.
Ho-Kashyap procedure (see more in Theodordis, Koutroumbas 2006, Simon 1986)
involves the simultaneous finding of both the separating vector a and the tolerance
vector b. The idea is, that if the sample (classes) are separable, then the minimum
value 2( )J a Ya b= −  is zero and the vector a, at which this value is reached, will be
a separating vector.

As the necessary conditions for an extremum function of two variables, we get

( ) ( )
( ) ( )

, 2 0,

, 2 0.

T
a

b

J a b Y Ya b

J a b Ya b

⎧∇ = − =⎪
⎨

∇ = − − =⎪⎩

Ho-Kashyap procedure suggests using two-step algorithm for solving this
problem.

1. For any fixed b from the first equation we find a.
2. For this fixed a from the second equation we get b.
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The first step involves using a pseudo-inverse matrix, that is, from the following
condition

( )2 0TY Ya b− =  we can get ( ) 1
.T Ta Y Y Y b

−
=

The second step involves receiving b for a fixed a, which seems to be the same as
the b = Ya, but b must be positive, so to find b we apply the gradient descent method

( ) ( ) ( ) ( ) ( )( )1 , .k k k k k
bb b J a b+ = − η ∇

For small values b and great gradient we still can receive a negative value b. To solve
this problem, if the gradient has a large positive value, we assume that η is equal to 0.

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
, , .

2
k k k k k k

b bb b J a b J a b+ ⎛ ⎞= − η ∇ − ∇⎜ ⎟⎝ ⎠

Let ( ) ( ) ( ) ( ) ( )( )1
,

2
k k k k k

bYa b J a bε = − = − ∇  be an error value, then

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1
2 2 .

2
k k k k k k kb b b+ = − η − ε − ε = + η ε + ε

Let’s formalize Ho-Kashyap procedure.
Suppose, at first, k = 1 and for any starting values ( ) ( )1 1,a b  the procedure per-

forms the following steps:

1. ( ) ( ) ( ).k k kYa bε = −

2. ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1
2 2 .

2
k k k k k k kb b b+ = − η − ε − ε = + η ε + ε

3. ( ) ( ) ( )11 1 .k kT Ta Y Y Y b
−+ +=

4. k = k+1 until the stop condition is fulfilled, which can be, for example, the limita-
tion of the number of steps k, the stabilization of the vector b or the error value ε.
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3. Application of fuzzy logic in Data Mining

3.1. What is fuzzy thinking?

AI problems (artificial intelligence) have been developed by mankind since time
immemorial, from Galatea, when Pygmalion created to “Skynet”, was defeated by
Schwarzenegger terminator. How can we distinguish the crafty AI from a normal
person? Clearly, the answer to this question is included in Alan Tyuring article “Com-
puting Machinery and Intelligence” from 1950. The proposed solution is known as
the Turing test. But in June 6th, 2014 Virtual Boy known as “Eugene Gustman from
Odessa” passed the Turing Test by convincing a group of people, via chat, that it was
actually a 13-year-old-boy. The conversation was conducted in a way that machine’s
answers seemed to belong to the man, not the machine. Why had this step taken so
much time? And why did it happen?

Unlike a computer program, a person (expert), involved in solving the problem,
usually relies on common sense, using vague and ambiguous terms. For example, an
expert might say, “despite I’m a little tired, but I can still do the job for a while.” Other
experts have no difficulty understanding and interpreting this statement. And what
about IT-skilled computer providing the same level of understanding? Is it possible to
develop such a program that the computer could use vague and ambiguous terms? Can
we achieve it?

An instrument to achieve this aim is fuzzy logic. Specifically, the term relies on the
theory of fuzzy sets, namely, sets that calibrate vagueness (ambiguity). Fuzzy logic is
based on the idea that all concepts make gradation of possibilities. Boiling water is very
hot, the tea is not enough strong, soup is insufficiently salted, weather conditions are
not congenial. Such a gradient scale helps to distinguish the items belonging to certain
class of components or these which do not.

Classical logic uses crisp differences. This is about drawing a line separating two
sets. For example, according to the Beaufort scale, if the wind speed hits 10.7 m/s, then
it gives fresh breeze, but if it hits approximately 10.8 m/s then it is already defined as
a strong breeze.
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Fuzzy logic reflects how people think, trying to simulate the feelings covered be-
hind our words, our decisions and our common sense. As a result, it leads to the con-
struction of words relativization more than in human intelligence systems if we may say so.

Fuzzy logic or many-valued logic was introduced in the 1930s, by Polish logician
and philosopher Jan Lukasiewicz. Classical logic accepts only two values: 1 (true)
and 0 (false), while Lukasiewicz logic expands the range of truth values to all real num-
bers between 0 and 1. This approach has led to inaccurate methods of reasoning, called
“Theory opportunities”.

In 1965, Lotfi Zadeh, professor and head of the Department of Electrical Engi-
neering, at University of California in Berkeley published his famous work “Fuzzy
Sets” (Zadeh 1965). In fact, Zadeh renewed, collected and researched this phenome-
non, translating the theory of opportunities in the formal system of mathematical
logic and, more importantly, he introduced a new concept for the application of natu-
ral language. This new logic for representing and manipulating fuzzy terms was called
fuzzy logic.

In contrast to the two-valued classical logic, fuzzy logic is ambiguous. It has some-
thing to do with the degree of compliance and degrees of truth. Fuzzy logic uses logical
continuum of values between 0 (completely false) and 1 (fully right). So instead of just
black and white (see Fig. 3.1a), it uses a range of colors (see Fig. 3.1b), assuming that
the concept may be partly true and partly false simultaneously.

Fig. 3.1. The range of values for classical logic (a) and fuzzy logic (b)

3.2. Fuzzy sets

The concept of the set is fundamental for mathematics. Let X be a classic crisp set,
and x an element. Then the element x belongs to X (x ∈ X) or does not belong to X (x ∉ X),
thus classical set theory imposes a crisp boundary and gives value 1 to each element
of the set and value 0 to all elements that are not included within the prescribed set.
Theory of distinct sets is determined by the logic that uses one of two values: true
or false. The basic idea of fuzzy sets theory is that an element belongs to a fuzzy
set with a certain degree of membership. Thus, the sentence is neither true nor false,
but may be partly true (or partly false) to some extent. This degree is commonly ac-
cepted as a real number in the interval [0, 1]. More detailed explanation can be found

a) b)
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for instance in (Dubois and Prade 1988, Dubois 1993, Fedrizzi and Pasi 2008, Kauf-
mann 1975a, Kaufmann 1975b, Lee 1990, Pedrycz 1984, Skalna et al. 2015, Yager et al.
1987, Yager 1986, Yager and Zadeh 1992, Zadeh 1965, 1996).

So, a simple question: “How strong is the wind today?”, has a clear answer accord-
ing to Beaufort force wind scale, the Beaufort strong wind begins with a speed of 10.8 m/s
(see Fig. 3.2) so, if the wind speed is faster than 10.8 m/s, the wind is strong.

Fig. 3.2. A crisp set describing the strong wind

And going back to the question: “How strong is the wind today?”. In fuzzy terms
the answer can be different. A fuzzy set is able to ensure a smooth transition through
the boundary between the concepts of strong wind and light wind (see Fig. 3.3).

Fig 3.3. A fuzzy set describing the strong wind

It is possible to consider answers such as “not very strong wind”, “very light wind”,
“calm wind” and so on.

A fuzzy set can be simply defined as a set with fuzzy boundaries.
Let X be the universe and its elements are designated as x. In classical set theory,

a crisp subset A from X is defined by the function fA(x) (the so-called characteristic
function A)

( ) ( )
1, if ,

: {0,1} where
0, if .

∈⎧⎪→ = ⎨
∉⎪⎩

A A
x A

f x X f x
x A
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The result is a mapping of X into a set of two elements. For any element x of
universe X, the characteristic feature fA(x) is equal to 1 if x is an element of the set A,
and equal to 0 if x is not an element A.

For the case of fuzzy set theory a membership function for set A, subset of uni-
verse X, is defined by function μA(x) as follows:

( ) [ ]μ →: 0,1 ,A x X

where:
μA(x) = 1 if x is totally in A,

μA(x) = 0 if x is not in A,

0 < μA(x) < 1 if x lies partly in A.

This set of axioms allows to consider a wide range of options. For any element x of
the universe X, membership function μA(x) is equal to the degree in which x is element
of set A. This degree (a value of [0, 1]) represents the degree of membership value
which is also labeled as accessories of element x in the set A.

Following slightly more formal approach to the concept of fuzzy set (this is not
possible without its implementation), we need to express it in a functional form, and
then compare the elements of the set to their degree of affiliation (see Fig. 3.4). Typical
forms are triangular and trapezoidal representations, as well as various straight and
sigmoid ones. In practice, most applications use a linear function (of a triangular
and trapezoidal shape).

Fig. 3.4. An illustration of crisp set and fuzzy set (a); their membership functions (b)

According to the estimation of the wind force on the Beaufort scale, we can de-
scribe crisp sets representing the weak, medium and strong wind (see Fig. 3.5).

a) b)
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Fig. 3.5. A crisp set of the wind power classification

A similar fuzzy set can be represented as it is shown in Figure 3.6.

Fig. 3.6. A fuzzy set classification of the wind power

Note that in a fuzzy case the wind at a speed of 13.8 m/s belongs to “medium wind”
with a level of 0.37, and also to “strong wind” with a degree of affiliation 0.47. Thus,
the wind of 13.8 m/s has a partial membership in two or multiple sets.

Now, let X represents a universe of distinct set contai0ings seven elements

X = {x1; x2; x3; x4; x5; x6; x7}.

In addition, let A be a crisp subset X and consists of three elements: A = {x2; x3; x6}.
In this case, the subset A can be described as follows

A = {(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 0), (x6, 1), (x7, 0)},

i.e., as a set of pairs {(xi, μA(xi))} where μA(xi) is the degree of membership referring to
element xi belonging to a subset of A.
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If X is the reference set and A is a subset of X, then A is called a fuzzy subset X, if
and only if

( )( ){ } ( ) [ ]= μ ∈ μ →, , , : 0, 1 .A AA x x x X x X

In the particular case μA(x): X → {0, 1}, the fuzzy subset A becomes crisp.
A fuzzy subset A is a finite support of set X represented as

( )( ) ( )( ) ( )( ){ }= μ μ μ1 1 2 2, , , , ..., , .A A n A nA x x x x x x

The subset A often takes the following form

( ) ( ) ( ){ }= μ μ μ1 1 2 2/ ; / ; ...; / .A A A n nA x x x x x x

Here, the delimiter “/” is used to associate membership values with its coordinate
along the horizontal axis (abscissa).

As an example, we can write the following conformity vector:
Strong wind = (0/5.5; 0/10.8; 0.47/8.13; 1/17.2)
Average wind = (0/3.4; 1/8.0; 0.37/8.13; 0/17.2), etc.

3.3. Linguistic variables and linguistic gain

At the core of the fuzzy set theory is the idea of linguistic variables (see more in
Mamdani, Assilian 1975, Mamdani 1977, Olaru, Wehenkel 2003, Skalna et al. 2015,
Yager, Zadeh 1992, Zadeh 1975). Linguistic variable corresponds with fuzzy variable.
For example, the statement “high rating” means that the linguistic variable “rating”
has a high linguistic value. In fuzzy expert systems, linguistic variables are used to con-
struct fuzzy rules. For example:

– IF the wind is strong THEN you should close window,

– IF it is getting dark THEN you should turn on the light.

The range of possible values of the linguistic variable can be quite varied, since the
wind velocity may range from 0 to more than 32.7 m/s, which includes all subsets: calm,
quiet wind, moderate wind, strong wind, storm, tornado, and others.

Added to this, there is a concept of linguistic amplification referring to terms
that modify the shape of the fuzzy sets. They include adverbs such as: very, somewhat,
rather, more or less, slightly, and so on.
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Linguistic variables are used as:

– universal modifiers such as very, fairly, highly;
– true values such as true, completely, false, mainly;
– probability, for example, likely or not very likely;
– quantifiers, such as most, a few or a little;
– features such as almost impossible, or possible.

Linguistic amplification can effectively create new subsets. We can enlist a lot of
meanings relating to “ripe tomato” which create a subset including, for instance “not
very ripe tomatoes”, “not quite ripe tomatoes”, “very ripe tomatoes”, “more or less
ripe tomatoes” and so on. At the same time the set of “more or less ripe tomatoes” is
wider than just a set of “ripe tomatoes”. Thereby, using linguistic amplification can
either extend or narrow the initial set.

Thus, linguistic amplification allows applications on the set of “strong wind” to
allocate a subset of “very strong winds”. In this case, the wind at a speed of 13.8 m/s
with a degree of membership 0.47 is a “strong wind” and with a degree of membership
0.22 is “very strong wind”, which is quite reasonable as it is shown in Figure 3.7.

Fig. 3.7. The example of linguistic hedges

For that mutter we turn to the mathematical formalization of linguistic strength-
ening, first and foremost considering the design, commonly used in practical applica-
tions.

– “Very” – operation which narrows down the set and reduce the degree of the fuzzy
element membership. Operation “very” can be defined as the square of the mem-
bership function

( ) ( )( )μ = μ 2
.very

AA x x
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For instance, if the degree of membership of a tomato to the variety of “ripe”
equals to 0.8, then the “very ripe” degree of membership equals to 0.64.

– “Extremely,” it serves the same purpose as “very”, but it does so to a greater
extent, which can be done by raising μA(x) to the third power:

( ) ( )( )μ = μ 3
.extremely

AA x x

In the previous example, the tomato will be “extremely ripe” if its degree of affili-
ation is 0.512.

– “Highly” just an extension of concentration.

( ) ( )( ) ( )( )μ = μ = μ
2 4

.highly very
AA Ax x x

– “More or less” – expand operation, which is a result of expanding the set and
hence increasing the degree of membership of the fuzzy element. This operation
can be represented as:

( ) ( )μ = μ .moreorless
A Ax x

Thus our tomato with a degree of 0.89 is “more or less ripe.”
– “Indeed” (similar with “in fact”, “truly”, “where it is so”, “perhaps”), the intensifi-

cation of the operation which strengthens the meaning of a sentence. This can be
done by increasing the degree of membership if it is less than 0.5 and if it is above
0.5 and reducing it if it is above 0.5, which can be written as:

( ) ( )( ) ( )μ = μ ≤ μ ≤22 if 0 0.5indeed
A A Ax x x

or

( ) ( )( ) ( )μ = − − μ < μ ≤2
1 2 1 if 0.5 1.indeed

A A Ax x x

Therefore, if the degree of membership of a tomato to a variety of “ripe” is equal
to 0.8, then it would be “indeed ripe” with the degree of membership 0.92.

If the degree of membership of a tomato to a variety of “ripe” is equal to 0.2, then
it would be “indeed ripe” with the degree of membership 0.08.

The Table 3.1 presents the linguistic hedges in fuzzy logic.
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Table 3.1

The presentation of linguistic hedges in fuzzy logic

3.4. Operations on fuzzy sets

In this section we confine ourselves to only those operations that will be needed
further. Specifically these are: complement, inclusion (containment), intersection and
union (for more see in Skalna et al. 2015, Zadeh 1996). We start with a set shown
in Figure 3.8.

Fig. 3.8. The original set A

Complement

The complement of a subset A is an opposite of this subset. For example, if we
have a set of “ripe tomatoes”, its complement is a set “not ripe tomatoes”.

Linguistic gain Mathematical construction Graphic illustration 

Very  (μA(x))2 

 

Extremely (μA(x))3 

 

Highly (μA(x))4 

 

More or less ( )A xμ  

 

Indeed 
2(μA(x))2  if  0 ≤ (μA(x) ≤ 0.5 
1–2(1–μA(x))2  if   0.5 < (μA(x) ≤ 1 
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If A is a fuzzy set with membership function μA(x), the membership function of its
complement ¬A is ( ) ( )¬μ = − μ1A Ax x  and is shown in Figure 3.9.

Fig. 3.9. The complement of the set A

For example, if we have a fuzzy set of “light wind”, we can easily get the fuzzy set
“not weaker than the wind”

Light wind = (1/0.3; 1/1.5; 0.71/4.0; 0.24/5.0; 0/5.5; 0/8.0; 0/10.8; 0/17.2; 0/32.7)

NOT weaker than the wind = (0/0.3; 0/1.5; 0.29/4.0; 0.76/5.0; 1/5.5; 1/8.0; 1/10.8;
1/17.2; 1/32.7)

Inclusion (containment)

Like a kind of Babushka dolls in which each doll can contain many other dolls, one
set can contain other sets. For example, a set “strong wind” contains the set “very
strong wind”. Therefore, the “very strong wind” is a subset of the “strong wind”. In this
case all crisp subset elements belong to the superset more fully and their membership
values are 1. For the fuzzy sets, each cell may belong to the subset less than to the
larger set. Elements of fuzzy subset may have a smaller membership degree in it than in
a larger set as it is shown in Figure 3.10.

Strong wind = (0/10.8; 0.47/13.8; 1/2.17; 1/32.7)

Very strong wind = (0/10.8; 0.22/13.8; 1/2.17; 1/32.7)

Fig 3.10. The inclusion A ⊆ B
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Intersection

In classical set theory, the intersection of two sets contains the elements that
simultaneously belong to both sets. For fuzzy sets element may partly belong to both
sets with different memberships. Thus, fuzzy intersection has lower membership in
both sets for each element (see Fig. 3.11).

Fig. 3.11. The intersection of sets A and B

Fuzzy intersection operation for two fuzzy sets A and B on the universe X can be
prepared as follows

( ) ( ) ( ){ } ( ) ( )min , where .A B A B A Bx x x x x x X∩μ = μ μ = μ ∩ μ ∈

Let’s consider, for example, fuzzy sets “medium wind” and “strong wind”.

“Medium wind” = (0/3.4; 0.46/5.5; 1/8.0; 0.7/10.8; 0.37/13.8; 0/17.2; 0/32.7)

“Strong wind” = (0/3.4; 0/5.5; 0/8.0; 0/10.8; 0.47/13.8; 1/2.17; 1/32.7)

The intersection of these two sets can be written as follows

“Medium wind”∩”Strong wind” = (0/3.4; 0/5.5; 0/8.0; 0/10.8; 0.37/13.8; 0/17.2; 0/32.7)

or

“Medium wind”∩”Strong wind” = (0/10.8; 0.37/13.8; 0/17.2)

Union

In the case of crisp sets, the union of two sets comprises elements that fall into
any of the sets. For fuzzy sets the union means an inverse of the intersection. That is,
the union is the largest membership value of element in any set as it is presented
in Figure 3.12.
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Fig. 3.12. The union of sets A and B

The fuzzy operation for forming the union of two fuzzy sets A and B on the uni-
verse X can be defined as

( ) ( ) ( ){ } ( ) ( )max , where .A B A B A Bx x x x x x X∩μ = μ μ = μ ∪ μ ∈

Consider again the fuzzy sets “medium wind” and “strong wind”

“Medium wind” = (0/3.4; 0.46/5.5; 1/8.0; 0.7/10.8; 0.37/13.8; 0/2.17; 0/32.7)

“Strong wind” = (0/3.4; 0/5.5; 0/8.0; 0/10.8; 0. 47/13.8 1/2.17; 1/32.7)

Then

“Medium wind” ∪ ”Strong wind” = (0/3.4; 0.46/5.5; 1/8.0; 0.7/10.8; 0.47/13.8;
1/2.17; 1/32.7)

3.5. Properties of operations on fuzzy sets

There are some important properties of operations on fuzzy sets presented below.

Commutativity

A ∪ B = B ∪ A

A ∩ B = B ∩ A

Example:

“Medium wind” ∪ “Strong wind” = “Strong wind” ∪ “Medium wind”

“Medium wind” ∩ “Strong wind” = “Strong wind” ∩ “Medium wind”
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Associativity

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

Example:

“Strong wind” ∪ (“Light wind” ∪ “Medium wind”) =

      = (“Strong wind” ∪ “Light wind”) ∪ “Medium wind”

“Strong wind” ∩ (“Light wind” ∩ “Medium wind”) =

      = (“Strong wind” ∩ “Light wind”) ∩ “Medium wind”

Distributivity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Example:

“Strong wind” ∪ (“Light wind” ∩ “Medium wind”)) =

      = (“Strong wind” ∪ “Light wind”) ∩ (“Strong wind” ∪ “Medium wind”))

“Strong wind” ∩ (“Light wind” ∪ “Medium wind”)) =

      = (“Strong wind” ∩ “Light wind”) ∪ (“Strong wind” ∩ “Medium wind”))

Additionally, we can note that

 A ∪ A = A and A ∩ A = A

Example:

“Medium wind” ∪ “Medium wind” = “Medium wind”

“Medium wind” ∩ “Medium wind” = “Medium wind”
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Identity

A ∪ ∅ = A

A ∩ ∅ = ∅

A ∪ X = X

A ∩ X = A

Example:

“Strong wind” ∪ “No (Without) wind” = “Strong wind”

“Strong wind” ∩ “No (Without) wind” = “No (Without) wind”

“Strong wind” ∪ “Every wind” = “Every wind”

“Strong wind” ∩ “Every wind” = “Strong wind”

where “No (Without) wind” is an empty (null) set i.e. the set having the degree of mem-
bership of all 0 and “Every wind” is a set having all degrees of membership equal to 1.

Involution

( )¬ ¬ =A A

Example:

NOT (NOT “Strong wind”) = “Strong wind”

Transitivity

If (A ⊂ B) ∩ (B ⊂ C) then A ⊂ C

Each set contains a subset of its subsets.

Example:

IF (“Extremely strong winds” ⊂ “Very strong wind”) and (“Very strong wind” ⊂

      “Strong wind”) THEN (“Extremely strong winds” ⊂ “Strong wind”)
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De Morgan’s laws

 ¬(A ∩ B) = ¬A ∪ ¬B

¬(A ∪ B) = ¬A ∩ ¬B

Example:

NOT (“Strong wind” ∩ “Light wind”) = NOT “Strong wind” ∪ NOT “Light wing”

NOT (“Strong wind” ∪ “Light wind”) = NOT “Strong wind” ∩ NOT “Light wind”

Using fuzzy set operations, their properties and linguistic strengthening, we can
easily get a lot of fuzzy sets. For example, if we have a fuzzy set A as a “strong wind”
and a fuzzy set B as a “light wind”, we can get a fuzzy set C as a “not very strong
wind” and “not very light wind” or also a set D as “not very strong and very light wind”
in result of the following operations:

( ) ( )( )( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

μ = − μ − μ

μ = − μ − μ

∩

∩

2 2

4 4

1 1 ,

1 1 .

C A B

D A B

x x x

x x x

3.6. Fuzzy inference rules

In 1973, Lotfi Zadeh published his second most influential paper (see Zadeh 1973,
Zadeh 1975). This document describes a new approach to the analysis of complex
systems. Not to mention that Zadeh’s publication outlines the application of assigning
different values in fuzzy rules.

A fuzzy rule can be defined as the conditional expression in the following form

IF x is equal A THEN y is equal to B,

where:
x, y – linguistic variables,

A, B – linguistic variables defined by fuzzy sets on the universe of X and Y, re-
spectively.

In general, the argument IF-THEN consists of two separate parts: the evaluation
one (IF part of the rule) and application one of the result (THEN part of the rule).
The classic rule IF-THEN uses binary logic, that is, if the first part is true, then the
second one is also true and vice versa. In fuzzy systems, to some extent, all of the rules
work partially.
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In the case of loyalty with some degree of IF conditions, we see that with the same
degree it is true for the THEN condition.

For example, we can consider two fuzzy sets “Wind speed” and “Cloudiness” pre-
sented in Figure 3.13.

Fig. 3.13. The monotonic range of wind strength and cloudiness values (in points)

And what if the rule of fuzzy inference has several pieces?
For example:

IF the weather is frosty and snowy THEN there ski trip might be planned

IF the weather is good or pleasant THEN company picnic will succeed

The result of each rule is a fuzzy set, but usually we need to get a single number.
In other words, we want to get the exact solution, not fuzzy. To get one crisp solution
to the output variable, fuzzy expert system first aggregates all output fuzzy sets into
a single output fuzzy set, and then collects the resulting fuzzy set in a single number.

The most frequently used fuzzy inference method is a so-called method of Mamdani.
In 1975, Professor, University of London, Ebrahim Mamdani built one of the first

fuzzy systems to manage the combination of steam engines and boilers (see Mamdani,
Assilian 1975, Mamdani 1977).

The process of fuzzy inference in Mamdani style is carried out in four stages: fuzz-
ification of input variables, evaluation rules, the aggregation rules of inference and,
finally, defuzzification, i.e. reduction to the definition.

Fuzzy inference algorithms

Let x, y be the input variables that have clear values x0, y0 and z – output member-
ship of commutative function. Let’s μA1 . μA2 . μB1 . μB2 . μC1 . μC2 and rules be given

IF x is A1 and y is B1, THEN z is C1, A2 is WHEN x and y is B2, THEN z is C2
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Mamdani algorithm

In systems such as Mamdani’s knowledge base is constructed from vague state-
ments like “the z have alpha” with “and” tangles in “IF-THEN”.

The stages of fuzzy inference are realized as follows:

1. Fuzzification: the degrees of truth are determined for prerequisites of each rule:
μA1(X0), μA2(X0), μB1(Y0), μB2(Y0). Fuzzification (introduction of fuzziness) is
a fitting of the correspondence between the input numerical variable of the fuzzy
inference system and the value of the membership function for the corresponding
term of the linguistic variable.

2. Conclusion: It is determined the clipping level for prerequisites for each of the
rules with using the operation of minimum

( ) ( ){ } ( ) ( ){ }α = μ μ α = μ μ
1 1 2 21 0 0 2 0 0min , , min , .A B A Bx y x y

Then there are the truncated membership functions

( ) ( ){ } ( ) ( ){ }′ ′μ = α μ μ = α μ
1 1 2 21 0 2 0min , , min , .C C C Cz x z x

3. Composition: a maximum operation allows to find truncated functions, which
results in giving us a fuzzy subset of the final output for a variable membership
function

( ) ( ) ( ) ( ){ }
( ){ } ( ){ }{ }

′ ′Σμ = μ = μ μ =

= α μ α μ

1 2

1 21 2

max ,

max min , ,min , .

C C C

C C

z z z z

z z

4. Reduction to the definition for z0 is produced by gravity

( )

( )

Σ

Σ

⋅μ

=

μ

∫

∫
0 .

Max

Min

Max

Min

z z dz

z

z dz

Where Min and Max are the boundaries of the universe fuzzy variables. The algo-
rithm is illustrated in Figure 3.14.
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Fig. 3.14. The illustration of the Mamdani algorithm

Tsukamoto algorithm

Baseline data and knowledge base are the same as in Mamdani algorithm, but
additionally it is assumed that functions μC1(Z), μC2(Z) are monotonic.

Stages of fuzzy inference:

1. Fuzzification: there are degrees of truth for all prerequisites of each rule: μA1(X0),
μA2(X0), μB1(Y0), μB2(Y0).

2. Conclusion: There are the cut-off levels for each of the prerequisites for the oper-
ation of the rules using the minimum

( ) ( ){ } ( ) ( ){ }α = μ μ α = μ μ
1 1 2 21 0 0 2 0 0min , , min , .A B A Bx y x y

3. Crisp values are then z1 and z2 in equations ( ) ( )α = μ α = μ
1 21 2, .C Cz z

4. It clearly identifies the value of the output as a weighted average of z1 and z2

α + α=
α + α

1 1 2 2
0

1 2
.

z z
z

In general, the precise value z0 is defined by the centralization method. It can be
illustrated in Figure 3.15.
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Fig. 3.15. The illustration of the Tsukamoto algorithm

Sugeno algorithm

In the algorithm of Sugeno the knowledge base is constructed from the rules in
the following form:

IF x is A1 and y is B1, THEN z1 = a1x + b1y;

IF x is A2 and y is B2, THEN z2 = a2x + b2y.

Stages of fuzzy inference (see in Sugeno 1985a, Sugeno 1985b, Takagi and Sugeno
1985, Terano et al. 1994):

1. Fuzzification: there are degrees of truth for all prerequisites of each rule prerequi-
sites: μA1(X0), μA2(X0), μB1(Y0), μB2(Y0).

2. Conclusion: there are the cut-off levels for each of the prerequisites for the opera-
tion of the rules using the minimum:

 ( ) ( ){ } ( ) ( ){ }α = μ μ α = μ μ
1 1 2 21 0 0 2 0 0min , , min , .A B A Bx y x y

3. Individual rights are the outputs: = + = +* *
1 1 1 2 2 2,z a x b y z a x b y  which clearly iden-

tifies the value of output:

α + α
=

α + α

* *
1 1 2 2

0
1 2

.
z z

z

The algorithm is illustrated in Figure 3.16.
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Fig. 3.16. The illustration of the Sugeno algorithm

Larsen algorithm

The knowledge base in Larsen algorithm (see more in Larsen 1980) corresponds
with the knowledge base for Mamdani algorithm.

1. Fuzzification: there are degrees of truth for each rule prerequisites:

μA1(X0), μA2(X0), μB1(Y0), μB2(Y0).

2. Conclusion: The cut-off levels are prerequisites for each of the operation rules for
at least restricted to:

( ) ( ){ }
( ) ( ){ }

α = μ μ

α = μ μ

1 1

2 2

1 0 0

2 0 0

min , ,

min , .

A B

A B

x y

x y

In Larsen algorithm fuzzy subset of output variable for each rule is using the mul-
tiplication operator by the formula:

( ) ( ) ( ) ( )′ ′μ = α μ μ = α μ
1 1 2 21 2, .C C C Cz z z z

3. Composition: a maximum operation is defined by association which finds private
fuzzy subsets. It is the final fuzzy subset to exit with a variable membership function:

( ) ( ) ( ) ( ){ } ( ) ( ){ }′ ′Σμ = μ = μ μ = α μ α μ
1 2 1 21 2max , max , .C C C C Cz z z z z z

4. Reduction to the definition is also produced by the method of gravity center.
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The Larsen algorithm is illustrated in Figure 3.17.

Fig. 3.17. The illustration of the Larsen algorithm

Let’s take a look at an example. It is required to assess the level of risk associated
with software development projects. We assume that there is a possibility of varying
only two parameters – the volume of funding and project staffing size (see in Chiu and
Park 1994, Shin and Wang 2010).

Step 1

At the first stage, we transform input crisp to input fuzzy variables. As we have two
input parameters, we can associate it with two distinct values, respectively. The first
value is the size of a full-time project schedule. The second value is the amount of
funding for the project.

Suppose that we have the following resources – project financing = 35� and project
stylesheet = 60�. We can get fuzzy values for these precise values using the member-
ship function of the corresponding sets. Sets defined for project financing are ‘insuffi-
cient’, ‘critical’ and ‘adequate’. Sets defined for project stylesheet are ‘small’ and ‘large’.
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Thus, we have the following values for the fuzzy project financing:

μfinancing ‘insufficient’ (35) = 0.5,

μfinancing ‘critical’ (35) = 0.2,

μfinancing ‘adequately’ (35) = 0.0.

We have the following visual representation of this procedure (see Fig. 3.18).

Fig. 3.18. The fuzzy representation of the project financing

Below there are values for the fuzzy project sheet:

μstylesheet ‘small’ (60) = 0.1,

μstylesheet ‘high’ (60) = 0.7.

On the Figure 3.19, below, there is a visual representation of the procedure.

Fig. 3.19. The fuzzy representation of the project stylesheet state
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Rules

Now that there are fuzzy values, you can use fuzzy rules to obtain the final fuzzy
values. Rules are as follows:

1. IF project financing is adequate or project stylesheet is small, THEN the risk is law.
2. IF project financing is critical, and project stylesheet is large, THEN the risk is

normal.
3. IF project financing is insufficient THEN the risk is high.

Rule 1 – IF project financing is adequate or project stylesheet is small, THEN
the risk is law.

Rules which are concerning the disjunction, OR, are estimated by using the
UNION operator:

( ) ( ) ( ){ }∪μ = μ μmax , ,A B A Bx x x

μrisk ‘low’ = max {μfinancing ‘adequate’ (35) = 0.0; μstylesheet ‘small’ (60) = 0.1} =

                 = max {0.0; 0.1} = 0.1.

And an alternative method for calculating the disjunction i.e. through the algebraic
sum can take the following form:

( ) ( ) ( ) ( ) ( )∪μ = μ + μ − μ ⋅μ ,A B A B A Bx x x x x

μrisk ‘low’ = 0.0 + 0.1 – 0.1 · 0.0 = 0.1.

Rule 2 – IF project financing is critical, and project stylesheet is large, THEN the
risk is normal.

In conjunction fuzzy rules are calculated as follows:

( ) ( ) ( ){ }∩μ = μ μmin , ,A B A Bx x x

μrisk ‘normal’ = min{μfinancing ‘critical’ (35) = 0.2, μstylesheet ‘large’(60) = 0.7} =

                       = min{0.2, 0.7} = 0.2.

Alternatively, the same rule can be evaluated by using the multiplication:

( ) ( ) ( )∩μ = μ ⋅μ ,A B A Bx x x

μrisk ‘normal’ = 0.2 · 0.7 = 0.14.

Rule 3 – IF project financing is insufficient, THEN the risk is high.

μrisk ‘high’ = 0.2 · 0.7 = 0.14.
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The results of valuation rules

The result of evaluation rules can be shown as follows:

μrisk ‘low’ (z) = 0.1 (Fig. 3.20),

μrisk ‘normal’ (z) = 0.2 (Fig. 3.21),

μrisk ‘high’ (z) = 0.5 (Fig. 3.22).

Now we use the results to scale the membership functions (see Fig. 3.20–3.23).

Fig. 3.20. The evaluation of the low risk project

Fig. 3.21. The evaluation of the normal risk project
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Fig. 3.22. The evaluation of high-risk project

We carry out the union of the whole scalability to produce the final result. The
result is again displayed in green color in Figure 3.23.

Fig. 3.23. The assessment of the overall project risk

3.7. Defuzzification

Defuzzification can be performed in several different ways (see in Skalna et al.
2015, Zadeh 1996). The most popular method is the centroid method.
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Centroid method

This method applies in calculating the center of gravity for the area under the
curve.

( )

( )

=

=

μ

=

μ

∑

∑
COG .

b

A
x a

b

A
x a

x x

x

Bisector

There is a vertical line that divides the region into two subregions of equal area.
The bisector sometimes, but not always, coincides with the centroid line.

Average value

It is assumed that the plateau at the maximum value function takes a finite aver-
age value.

The lowest value of the maximum

It is assumed that the plateau at the maximum ultimate function takes the smallest
of the values, which it covers.

The highest value of the maximum

It is assumed that the plateau at the maximum ultimate function takes the largest
value which it covers.

Referring to the example given above we can calculate the final value of our
project risk.

We use centroid method to find the final value of the fuzzy risks associated with
our project.

( ) ( ) ( )+ + ⋅ + + + + ⋅ + + + + ⋅
= =

⋅ + ⋅ + ⋅
0 10 20 0.1 30 40 50 60 0.2 70 80 90 100 0.5

COG 67.4.
0.1 3 0.2 4 0.5 4

As a result, taking the definitions of this project risk into account it is 67.4�.
Notice, that application of the Sugeno algorithm gives a slightly different risk val-

ue i.e. 65�.
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Ranging

Note that quite often analyses needs to streamline the existing set of fuzzy sets, in
order to rank them. For example, it is required to assign each of them having a rating
for a set of projects (see in Chernov et al. 2015, Shin, Wang 2010). As in previous cases,
we use the estimation in the form of trapezoidal and triangular fuzzy numbers, as in
a special case.

So, after completing each project, we have receive an overall assessment of a num-
ber of trapezoidal numbers. Afterwards we can organize projects in accordance with
the assigned values.

Fig. 3.24. Trapezoidal and triangular fuzzy numbers

For comparison of fuzzy numbers, there are several different methods:

1) The method by Chew Park. Let’s fix parameter w. Every trapezoidal number
A = (a1, a2, a3, a4) is associated with the crisp number

( ) ( ) ( )= + + + + +1 2 3 4 2 3
1

cp .
4 2

w
A a a a a a a

The ordering is performed by ascending value cp(A).
2) The Chang method. Let’s assume the trapezoidal number A = (a1, a2, a3, a4)

keeps values in increasing order. The ordering is performed by ascending
value ch(A)

( ) ( )= + + − − −2 2 2 2
3 3 4 4 1 1 2 2

1
ch .

6
A a a a a a a a a

3) The method by Kaufman–Gupta. For the trapezoidal number A three values are
calculated as follows

( ) ( )= + + +1 1 2 3 4
1

kg 2 2 ,
6

A a a a a  ( ) ( )= +2 3 4
1

kg ,
6

A a a  ( ) = −3 4 1g .k A a a
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We assume that A ≥ B, if

( ) ( )>1 1kg kg ,A B or

( ) ( ) ( ) ( )= >1 1 2 2kg kg and kg kg ,A B A B or

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3kg kg and kg kg and kg kg .= = >A B A B A B

4) The Jane’s method. The method specifies the procedure for a set of fuzzy num-
bers A1, A2, ..., An. Let these numbers lie in the interval from b1 to b2. Then fuzzy
number B = (b1, b2, ∞, ∞) can be considered as “large number”. For each Ai, one
may consider extending its meaning so that Ai is a “big”.

( ) ( ) ( )( )Pos max min , .∈ = μ μ
ii A B

x
A B x x

Set A1, A2, ..., An is ordered by ascending values Pos(Ai ∈ B).
5) The method of Dubois-Prada. Like the previous method, there is a set of fuzzy

numbers A1, A2, ..., An. Each number Ai meets its degree of dominance over the
rest of the numbers:

( ) ( ) ( ){ }
,

PD Pos max min max min , .
≠≠

⎛ ⎞
= ≥ = μ μ⎜ ⎟

⎝ ⎠ i ji i j A A
j ij i x y

A A A x x

The numbers are ordered by ascending values of PD(Ai).
Considering the comparison methods in general, they may give different results.

Example

Suppose that we have three projects with the estimated trapezoidal number as
follows

A1 = (3, 5, 5, 9),  A2 = (3, 7, 7, 8),  A3 = (1, 6, 6, 10).

By the method of Chew Park with the parameter w = 1, we take the following
order:

cp(A1) = 10.5 < cp(A3) = 11.75 < cp(A2) = 13.25.

The best is the second project (A2), followed by the third (A3) and the first (A1) ones.
Chang method leads to the following result

ch(A2) = 15 < ch(A1) = 17 < ch(A3) = 25.5,

that is, the second project (A2) is the worst.
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By the method of Kaufman–Gupta it is obtained

kg1(A1) = 5.33 < kg1 (A3) = 5.83 < kg1 (A2) = 6.5,

which coincides with the result of the method of Park Chew.
In the method of Jain it is defined the plurality of large numbers as B = (0, 10, ∞, ∞).

Then

Pos(A1∈ B) = 6.43 < Pos(A3 ∈ B) = 7.14 < Pos(A2 ∈ B) = 7.27.

The order coincides with the order of Chew Park.
Application of the method of Dubois-Prada gives the following inequality

PD(A1) = 0.75 < PD(A3) = 0.875 < PD(A2) = 1.

This leads to the following list “Project 1 < Project 3 < Project 2”.

3.8. The choice of alternatives using fuzzy inference rules

Consider a multi-criteria selection methods based on complex descriptions of al-
ternatives aggregation rules with information as fuzzy sentences, such as in making
decisions (see for instance in Abdullah 2013, Baldwin, Xie 2005, Building Classification

Models: ID3..., Efstahiou, Rajkovic 1980, Ekel 2002, Evans, Lohse 2011, Federizzi, Pasi
2008, Larsen 1980, Lee 1990, Skalna et al. 2015).

Let U be a set of elements, A its fuzzy subset, μ degree of element memberships as
the number from the unit interval [0, 1]. Subset A has a linguistic variable values H.

Let the solution set be characterized by a set of criteria X1, X2, ..., Xp i.e. linguistic
variables on the base sets U1, U2, ..., Up respectively. A set of several criteria with
the corresponding values characterizes the presentation of satisfactory (acceptability)
solutions. Variable S «satisfactory» is also linguistic. Example statements can be writ-
ten as follows

d1 : “IF X1 = LOW and X2 = GOOD, THEN S = HIGH”.

In general, a statement has the form

di : “IF X1 = A1,i and X2 = A2,i and... and Xp = Ap,i THEN S = Bi”.
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The intersection (X1=A1,i ∩ X2=A2,i ∩ … ∩ Xp = Ap,i) is across X = Ai. The oper-
ation of fuzzy sets intersection corresponds to finding the minimum of the membership
functions

( ) ( ) ( ) ( )( )1 21 2min , , ..., .
i i i ipA A A A p

v V
v u u u

∈
μ = μ μ μ

Where ( ) ( ),1 2 1 2... , , ...,; ;
i jp p A jV U U U v u u u u= × × × = μ  – value of the element

supplies uj fuzzy set Ai,j. Then the rule will take the form

di : "IF X = Ai THEN S = Bi"

We denote the base set (U or V) by W. Then Ai is a fuzzy subset of W, while Bi

a fuzzy subset of the unit interval I = [0, 1].
The implication ("IF... THEN... ") of fuzzy sets is expressed as follows

( ) ( ) ( )( )( ), min 1, 1 ,H A B
w W

w i w i
∈

μ = − μ + μ

where H is a fuzzy subset on W × I, w ∈ W,  i ∈ I. Similarly expressions (d1, d2, ..., dq) are
converted into a set of (H1, H2, ..., Hq). Their union is a set D in the following form

D = H1 ∩ H2 ∩ … ∩ Hq

and for each (w, i) ∈ W × I it can be written in the following form

( ) ( ){ }, min , , 1, 2, ..., .
∈

μ = μ =
jD H

w W
w i w i j q

Consider the choice of alternatives, each of which is described by a fuzzy subset C of W.
Satisfactory alternative is based on a composite output rules

,G C D= �

where G is a fuzzy subset of the interval I. Then

( ) ( ) ( ){ }max min{( , , } .G C D
w W

i w w i
∈

μ = μ μ

A comparison of the alternatives occurs on the basis of point estimates. For fuzzy
set A ⊂ I it is define α-level as follows (α ∈ [0, 1])

( ){ }| , .AA x x x Iα = μ ≥ α ∈
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For each Aα we can calculate the average number of elements M(Aα):

1. For a set of n elements ( ) { }| ,
1

α α= ∈∑ i iM A x x A
n

2. For {Aα = a ≤ x ≤ b}, ( ) ,
2α
+=

a b
M A

3. For 1 1 2 20 ... 1,≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤n na b a b a b

{ }
1

Aα
=

≤ ≤�
n

i i
i

a x b  we get ( )
( )

( )

1

1

2
.

n
i i

i i
i

n

i i
i

a b
b a

M A

b a

=
α

=

+ −

=
−

∑

∑

Then the expected value of A can be calculated as follows

( ) ( )
max

max 0

1
,F A M A d

α

α= α
α ∫

where αmax is the value at which A has a maximum.

When choosing an option for each of them, a satisfactory and calculated appropri-
ate point estimate is considered, regarded the best alternative with the highest value.

Task – the choice of the most suitable candidate from the list

This example is based on the work by Borisov et al. (Borisov et al. 1990). Suppose
that we have the following result of the discussion over applicants:

d1: “IF a candidate is an experienced researcher who has a certain production
experience and teaching experience in high school, THEN he is the adequate”,

d2: “IF he has to d1 and can teach the theory of information systems, THEN he is
more than satisfactory”,

d3: “IF he has to d2 and he is a person who can find customer for high-tech prod-
ucts, THEN he is faultless”,

d4: “IF all agreed that he has d3 but he has not the teaching ability of the theory of
information systems, THEN he is very satisfactory”,

d5: “IF a candidate is a very experienced researcher who has the ability to find
a customer and is a good teacher, but no manufacturing experience, THEN he is satis-
factory”,

d6: “IF a candidate is an investigator who has no qualifications or ability to teach,
THEN he is unsatisfying”.
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Analysis of the data frame gives five criteria used in decision-making:

– X1 – research capacity,
– X2 – manufacturing experience,
– X3 – teaching experience,
– X4 – teaching experience of information systems theory,
– X5 – ability to find customers.

We will measure these variables at baseline set U candidates.

d1 “IF X1 = X2 = educated and some experience and X3 = good, THEN Y =
satisfied”,

d2 “IF X1 = X2 = educated and some experience, and X3 = X4 = good abilities,
THEN Y = more than satisfactory”,

d3 “IF X1 = X2 = educated and some experience, and X3 = X4 = good abilities
and X5=capable, THEN Y = perfect”,

d4 “IF X1 = X2 = educated and some experience and X3 = X5 = good abilities,
THEN Y = very satisfying”,

d5 “IF X1 = very educated and X2 = no experience, and X3 = X5 = good abilities,
THEN Y = satisfactory”,

d6 “IF X1 = not educated and X3 = not capable of teaching, THEN Y = not
satisfactory”.

The variable Y defined on the set J ={0; 0.1; 0.2; …; 0.9; 1}:

– satisfactory is defined as μS(x) = x for x ∈ J,
– more than satisfactory is expressed by ( ) 3

MS x xμ =  for x ∈ J,
– perfect is described as follows,

( )
1 if 1

0 if 1,

=⎧⎪μ = ⎨
⎪ ≠⎩

P

x
x

x

– very satisfying is defined as μVS(x) = x2 for x ∈ J,
– not satisfactory μUS(x) = 1 – x for x ∈ J.

Elections are held five candidates U = {u1, u2, u3, u4, u5}. We have the following
assessment of each candidate

A = EDUCATED EXPLORER =
{ }1 2 3 4 50.8 / , 0.6 / , 0.5 / , 0.1 / , 0.3 /u u u u u=
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B = SOME PRODUCTION EXPERIENCE =

{ }1 2 3 4 50.5 / , 1 / , 0 / , 0.5 / , 1 /u u u u u=

G = GOOD CAPACITY IN TEACH =

{ }1 2 3 4 50.6 / , 0.9 / , 1 / , 0.7 / , 1 /u u u u u=

D = CAPABILITY TEACHING INFORMATION SYSTEMS =

{ }1 2 3 4 51 / , 0.3 / , 1 / , 0 / , 0 /u u u u u=

E = CAPABILITY REQUEST EXTERNAL FINANCING =

{ }1 2 3 4 50 / , 0.5 / , 1 / , 0.8 / 0.1 /u u u u u=

Afterwards it can take the form of knowledge fragments:

d1 IF X = A and B and C, THEN Y = S

d2 IF X = A and B and C and D, THEN Y = MS

d3 IF X = A and B and C and D and E, THEN Y = P

d4 IF X = A and B and C and E, THEN Y = VS

d5 IF X = very A and not B and C and E, THEN Y = S

d6 IF X = not A or not C, THEN Y = US

Then, given that the operation of intersection of fuzzy sets corresponds to finding

the minimum of their membership functions and the operation of union corresponds

to their maximum, and it should be used the Y operations, we get the following sets:

d1: ( ) ( ) ( ) ( ){ }
{ }

1

1 1 2 3 4 5

min , ,

0.5 / , 0.6 / , 0 / , 0.1 / , 0.3 /

M A B Cu u u u

M u u u u u

μ = μ μ μ

=

d2: ( ) ( ) ( ) ( ) ( ){ }
{ }

2

2 1 2 3 4 5

min , , ,

0.5 / , 0.3 / , 0 / , 0 / , 0 /

M A B C Du u u u u

M u u u u u

μ = μ μ μ μ

=

d3: ( ) ( ) ( ) ( ) ( ) ( ){ }
{ }

3

3 1 2 3 4 5

min , , , ,

0 / , 0.3 / , 0 / , 0 / , 0 /

M A B C D Eu u u u u u

M u u u u u

μ = μ μ μ μ μ

=
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d4: ( ) ( ) ( ) ( ) ( )( )
{ }

4

4 1 2 3 4 5

min , , ,

0 / , 0.5 / , 0 / , 0.1 / , 0.1 /

M A B C Eu u u u u

M u u u u u

μ = μ μ μ μ

=

d5: ( ) ( ) ( ) ( ) ( ){ }
{ }

25

5 1 2 3 4 5

min ,1 , ,

0 / , 0 / , 0.25 / , 0.01 / , 0 /

M B C EAu u u u u

M u u u u u

μ = μ − μ μ μ

=

d6: ( ) ( ) ( ){ }
{ }

6

6 1 2 3 4 5

max 1 ,1

0.4 / , 0.4 / , 0.5 / , 0.9 / , 0.7 /

M A Cu u u

M u u u u u

μ = − μ − μ

=

In this way we get rules:

1 1: If , thend X M Y S= =

2 2: If , thend X M Y MS= =

3 3: If , thend X M Y P= =

4 4: If , thend X M Y VS= =

5 5: If , thend X M Y S= =

6 6: If , thend X M Y US= =

Using implication and its conversions “IF X = F, THEN Y = Q” in the expression

( ) ( ) ( )( ), min 1,1D M Qu i u uμ = − μ + μ  for each pair ( ), ∈u i  U × J we obtain the following
fuzzy subsets of U × J.

1

2
1

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5 0.6 0.7 0.8 0.9 1 1 1 1 1 1

0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0.9 1 1 1 1 1 1 1 1 1 1

0.7 0.8 0.9 1 1 1 1 1 1 1 1

u

u
D

u

u

u

=
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1

2
2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5 0.53 0.59 0.66 0.75 0.85 0.96 1 1 1 1
0.7 0.73 0.79 0.86 0.95 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

u
u

D
u

u
u

=

1

2
3

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 1 1 1 1 1 1 1 1 1 1

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

u
u

D
u

u
u

=

1

2
4

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 1 1 1 1 1 1 1 1 1 1

0.5 0.51 0.54 0.59 0.66 0.75 0.86 0.99 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0.9 0.91 0.94 0.99 1 1 1 1 1 1 1
0.9 0.91 0.94 0.99 1 1 1 1 1 1 1

u
u

D
u
u

u

=

1

2
5

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0.75 0.85 0.95 1 1 1 1 1 1 1 1
0.99 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

u
u

D
u

u
u

=

1

2
6

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 1 1 1 1 1 1 0.9 0.8 0.7 0.6
1 1 1 1 1 1 1 0.9 0.8 0.7 0.6
1 1 1 1 1 1 0.9 0.8 0.7 0.6 0.5
1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
1 1 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

u
u

D
u

u
u

=
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The result is an overall functional solution calculated as follows:

D = D1 ∩ D2 ∩ D3 ∩ D4 ∩ D5 ∩ D6 i.e. ( ) ( ){ }
1, ..., 6

, min , ,
jD D

j
u i u i

=
μ = μ

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5 0.53 0.59 0.66 0.75 0.85 0.96 0.9 0.8 0.7 0.6

0.4 0.5 0.54 0.59 0,66 0.7 0.7 0.7 0.7 0.7 0.6

0.75 0.85 0.95 1 1 1 0.9 0.8 0.7 0.6 0.5

0.9 0.91 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.7 0.8 0.9 0.99 0.9 0.8 0

u

u
D

u

u

u

=

.7 0.6 0.5 0.4 0.3

To calculate each of satisfactory alternatives for applicable rule, output fuzzy com-
posite medium can be k kE G D= �  where Ek is the degree of satisfaction of alterna-
tive k, Gk is a map alternative k in the form of a fuzzy subset of U, and D is a functional
solution. Then

( ) ( ) ( )( )( )max min , , .
k k kE G D

u U
i u u i

∈
μ = μ μ

Furthermore, in this case ( ) ( )0, ; 1,μ = ≠ μ = =
k kG k G ku u u u u u  here ( ) ( ), .μ = μ

kE D ki u i
In other words, Ek is the k-th row of the matrix D.

Returning to the example now we apply a procedure for comparison of fuzzy sets
E1, E2, E3, E4, E5 in the unit interval for the best solutions.

For the first alternative

1 {0.5 / 0; 0.53 / 0.1; 0.59 / 0.2; 0.66 / 0.3; 0.75 / 0.4; 0.85 / 0.5; 0.96 / 0.6; 0.9 / 0.7;

0.8 / 0.8; 0.7 / 0.9;0.6 /1}.

E =

We compute levels sets Ej, α. Their power M(Ej, α) is equal ( ),
1

.
1 n

j i
i

M E x
nα

=
= ∑

Where:

0 0.5; 0.5;d≤ α ≤ α =

{ } ( )1, 1,0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.5;E M Eα α= =
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0.5 0.53; 0.03;d≤ α ≤ α =

{ } ( )1, 1,0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.55;E M Eα α= =

0.53 0.59; 0.06;d≤ α ≤ α =

{ } ( )1, 1,0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.6;E M Eα α= =

0.59 0.6; 0.01;d≤ α ≤ α =

{ } ( )1, 1,0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.65;E M Eα α= =

0.6 0.66; 0.06;d≤ α ≤ α =

{ } ( )1, 1,0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 ; 0.6;E M Eα α= =

0.6 0.66; 0.06;d≤ α ≤ α =

{ } ( )1, 1,0.4; 0.5; 0.6; 0.7; 0.8; 0.9 ; 0.65;E M Eα α= =

0.7 0.75; 0.05;d≤ α ≤ α =

{ } ( )1, 1,0.4; 0.5; 0.6; 0.7; 0.8 ; 0.6;E M Eα α= =

0.75 0.8; 0.05;d≤ α ≤ α =

{ } ( )1, 1,0.5; 0.6; 0.7; 0.8 ; 0.65;E M Eα α= =

0.8 0.85; 0.05;d≤ α ≤ α =

{ } ( )1, 1,0.5; 0.6; 0.7 ; 0.6;E M Eα α= =

0.85 0.9; 0.05;d≤ α ≤ α =

{ } ( )1, 1,0.6; 0.7 ; 0.65;E M Eα α= =

0.9 0.96; 0.06;d≤ α ≤ α =

{ } ( )1, 1,0.6 ; 0.6.E M Eα α= =
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We find the expected values E1:

( ) ( ) ( )
max 0.96

1 1, 1,
max 0 0

1/ 0.96(0.5 0.5 0.55 0.03 0.6 0.06 0.65 0.01  

0.6 0.06 0.65 0.04 0.6 0.05 0.65 0.05 0.6 0.05 0.65 0.05 0.6 0.06) 0.55

1 1
0.96

4.

F E M E d M E d
α

α α

= ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

α =

=

= α =
α ∫ ∫

For the second alternative,

2 {0.4 / 0; 0.5 / 0.1; 0.54 / 0.2; 0.59 / 0.3; 0.66 / 0.4; 0.7 / 0.5; 0.7 / 0.6;

0.7 / 0.7; 0.7 / 0.8; 0.7 / 0.9; 0.6 /1}.

E =

We compute the restrictive set:

0 0.4; 0.4;d< α ≤ α =

{ } ( )2, 2,0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.5;E M Eα α= =

0.4 0.5; 0.1;d≤ α ≤ α =

{ } ( )2, 2,0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.55;E M Eα α= =

0.5 0.54; 0.04;d≤ α ≤ α =

{ } ( )2, 2,0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.6;= =
� �

E M E

0.54 0.59; 0.05;≤ α ≤ α =d

{ } ( )2, 2,0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.65;E M Eα α= =

0.59 0.6; 0.01;d≤ α ≤ α =

{ } ( )1, 2,0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1 ; 0.7;E M Eα α= =

0.6 0.66; 0.06;d≤ α ≤ α =

{ } ( )2, 2,0.4; 0.5; 0.6; 0.7; 0.8; 0.9 ; 0.65;E M Eα α= =

0.66 0.7; 0.04;d≤ α ≤ α =

{ } ( )2, 1,0.5; 0.6; 0.7; 0.8; 0.9;1 ; 0.75.E M Eα α= =
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And the expected value E2:

( )2 1 / 0.7 0.5 0.4 0.55 0.1 0.6 0.04 0.65 0.05

0.7 0.01 0.65 0.06 0.75 0.04 0.554.

(

)

F E = ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ =

For the third alternative:

{ }

( ) ( )

3

3

1 / 0; 1 / 0.1; 1 / 0.2; 1 / 0.3; 1 / 0.4; 1 / 0.5; 0.9 / 0.6; 0.8 / 0.7; 0.7 / 0.8; 0.6 / 0.9; 0.5 /1

1 /1 0.5 0.5 0.45 0.1 0.4 0.1 0.35 0.1 0.3 0.1 0.25 0.1 0.448.

E

F E

=

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

for the fourth:

( ) ( )

4

4

{0.9 / 0; 0.91 / 0.1; 0.9 / 0.2; 0.8 / 0.3; 0.7 / 0.4; 0.6 / 0.5; 0.5 / 0.6;

0.4 / 0.7; 0.3 / 0.8; 0.2 / 0.9; 0.1 /1}

1 / 0.91 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.1 0.01

0.298.

E

F E

=

= + + + + + + + + ⋅ + ⋅ =

=

And finally, for the fifth:

( )

5

5

{0.7 / 0; 0.8 / 0.1; 0.9 / 0.2; 0.99 / 0.3; 0.9 / 0.4; 0.8 / 0.5; 0.7 / 0.6; 0.6 / 0.7;

0.5 / 0.8; 0.4 / 0.9; 0.3 /1}

1 / 0.99 0.5 0.3 0.45 0.4 0.35 0.3 3 0.1 0.3 0.09 0.3) ) .( 91(

E

F E

=

= ⋅ + + + ⋅ ⋅ ⋅ + ⋅ =

Thus the expected value for satisfactory alternative u1 is equal to 0.554 for u2 is
equal to 0.554, u3 equals 0.425, u4 equals 0.298, and finally u5 equals 0.391.

As the best alternative we choose the one with the highest score.

3.9. Ranking alternatives based on heuristic approach

Consider an alternative ordering problem based on criteria that take into account
fuzzy estimates and heuristic assumptions about the usefulness of linguistic assessment
(see in Efstahiou, Rajkovitz 1980, Skalna et al. 2015, Terano et al. 1994, Turksen et al.
1992).
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Decision-making process model includes: evaluation of alternatives, the submis-
sion of the decision maker, a description of the decision making process.

Each alternative can be described using the quality criteria Di, i = 1, 2, ..., n.
The domain of definition is represented as a Cartesian product of n-sets Di, D =
= D1 × D2 × ... × Dn. A point is defined as a respective set of n values (d1, d2, ..., dn) ∈ D
where Di ∈ Di and is denoted by d(n).

If the criteria values are determined inaccurate (i.e. fuzzy), then alternative A is
a fuzzy subspace of D and it is represented as a Cartesian product of fuzzy sets for Di

( ) ( ) ( )1 2× × ... × .= nA F D F D F D

Where F(Di) is an any subset of Di with the membership function ( )( ).n
A dμ  It is

in accordance with the usual definition of fuzzy relation and fuzzy composition

( )( ) ( )
1,...,

min .n
A A i

i n
d d

=
μ = μ

Where μA(di) is a function on the criterion of evaluation of alternative capabilities Di.
The set of all possible alternatives is denoted by A and is a variety of fuzzy sets.
Universal elements of U are selected according to certain simple rules, for example,

U = {high, sufficiently high, medium, low enough, low}.

The dictionary can be expanded by introducing modifiers, such as “very quiet”,
“more or less”.

Utility U can be interpreted as a linguistic variable, whose value is a term of
the fuzzy sets, defined on the interval [0, 1]. Knowledge of the specified fuzzy utility
ratio F of { }( )n

iD d=  at the union U = {u}, which is a fuzzy set in the Cartesian product
D × U, is very important. F is characterized by using the ( )( ), ,nd uΦμ  whereby each
pair is assigned a value in the interval [0, 1]. F ratio is usually represented in a table
giving different points of the utility D.

The knowledge of the utility as a fuzzy relation F makes it possible to characterize
alternative A as a fuzzy subset V ∈ U where ,V A= Φ�  using the relation

( ) ( )( ) ( )( )max min , , .n
V Au d u uΦ

⎛ ⎞μ = μ μ⎜ ⎟⎝ ⎠

According to the definition of the set V, each alternative A is more than one utility
value, which has a different degrees of membership. For ranking the alternatives, it is
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necessary to establish their order, using the best estimate equivalent to worse, as well
as, find out how one fuzzy set is better than another.

Sometimes the highest degree of membership may be taken as a typical represen-
tative of the alternatives comparison. By arranging the set of alternatives in order of
their usefulness, U elements are created. It expresses set V linguistically. Additionally,
V can be expressed graphically, which allows compare alternatives visually.

Example. Let the dean’s office be able to give the award to the students. Selecting
a candidate for the award makes two interested parties involve: the dean’s office and
the Group’s feature, expresses their preferences for candidates. Their statements de-
fine a set of performance criteria and targets, in particular:

– student achievement (performance) D1 = {Excellent, Good, Satisfactory},
– student public activity D2 = {Very high, High, Acceptable, Low},
– student discipline (attendance) D3 = {Good, Acceptable, Poor},
– student income (incoming?) D4 = {Good, Acceptable, Poor}.

The universal set for the utility is defined as follows

U = {high, sufficiently high, medium, low enough, low}.

You can also use the modifier “and”, “or”, “very”. There is defined utility based
on a survey of the dean’s office representatives and the group’s property value of the
linguistic groups. Basic utility variable belongs to the interval [0, 1].

Heuristics dean’s office:

1. Excellent academic performance is more preferably than good academic perfor-
mance.

2. Activity may be acceptable if there is a good performance. Although the activity
must be very high, if the performance is good.

3. Discipline should be good.
4. Incoming students are not taken into account.

Heuristics property groups:

1. Progress should not be satisfactory.
2. Usefulness at an acceptable high activity, excellent performance and a poor mate-

rial position; the usefulness of a sufficiently high at a very high or a high activity,
a good performance, a good financial position.

3. Evaluation of discipline is not considered.
4. With a good material position of candidate there is taken into account only con-

firmed excellent performance and very high activity.
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So we can obtain

The ideal candidate in terms of the dean’s office:

Excellent performance, very high activity, good discipline.

The ideal candidate in terms of the Group’s feature:

Excellent performance, very high activity, the poor financial situation.

Construction of utility relations. The solution space D = D1 × D4 × D3 × D4

comprises 3 × 4 × 3 × 3 = 108 n-dimensional tuples. Using heuristics, those elements,
which are considered insignificant for both groups according to criteria performance
evaluation, are rejected and we obtain a reduced set of criteria as follows

– D1 = {Excellent, Good}
– D2 = {Very high, High, Satisfactory}
– D3 = {Good}
– D4 = {Good, Poor}

Thus, the number of n-dimensional tuples, covering an area of utility, is reduced
to 2 × 3 × 1 × 2 = 12 points (n-tuple – see Tab. 3.2). After that the group agree to assess
the utility of n-tuples.

Table 3.2

Relationship utility F for evaluating alternatives

Student 
achievement 

Student public 
activity 

Student 
discipline 

Student 
incoming 

Utility 
to the dean’s office 

Utility 
group 

EXCELLENT 
VERY 
HIGH 

GOOD POOR 
VERY VERY 

HIGH 
VERY VERY 
VERY HIGH 

EXCELLENT 
VERY 
HIGH 

GOOD GOOD 
VERY VERY 

HIGH 
VERY VERY 
VERY HIGH 

GOOD 
VERY 
HIGH 

GOOD POOR HIGH 
VERY VERY 

HIGH 

GOOD 
VERY 
HIGH 

GOOD GOOD HIGH HIGH 

EXCELLENT HIGH GOOD POOR VERY HIGH 
VERY VERY 

HIGH 

EXCELLENT HIGH GOOD GOOD VERY HIGH HIGH 

GOOD HIGH GOOD POOR HIGH VERY HIGH 

GOOD HIGH GOOD GOOD HIGH ENOUGH HIGH 

EXCELLENT ACCEPTABLE GOOD POOR HIGH ENOUGH ENOUGH HIGH 

EXCELLENT ACCEPTABLE GOOD GOOD HIGH ENOUGH AVERAGE 

GOOD ACCEPTABLE GOOD POOR AVERAGE ENOUGH HIGH 

GOOD ACCEPTABLE GOOD GOOD AVERAGE AVERAGE 
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Suppose there are three candidates for the award, which can be characterized as
follows:

1. Student with good academic performance, very high activity, good discipline and
a poor financial situation

A1 = {GOOD, VERY HIGH, GOOD, POOR}.

2. For the second activity of the student is evaluated rather as high than satisfactory.
This can be expressed by a fuzzy set

F(D2) = {0.6 / HIGH; 0.4 / SUFFICIENTLY}.

The values of the other criteria are crisp. The alternative is described as follows:

A2 = {0.6 / (EXCELLENT, HIGH, GOOD, POOR); 0.4 / (EXELLENT,

              SUFFICIENTLY, GOOD, POOR}.

3. Third candidate estimation can be written as follows:

F(D1) = {0.6 / EXCELLENT; 0.3 / GOOD};

F(D2) = {0.2 / HIGH; 0.8 / SUFFICIENTLY };

F(D3) = {1 / GOOD}.

F(D4) = {0.6 / GOOD; 0.4 / POOR}.

A third alternative is defined as the direct product of the sets, and the minimum is
taken by the membership function, i.e.,

A3 = {min {0.6, 0.2, 1, 0.6} / (EXCELLENT, HIGH, GOOD, GOOD);

min {0.6, 0.8, 1, 0.6} / (EXCELLENT, SUFFICIENTLY, GOOD, GOOD);

min {0.6, 0.2, 1, 0.4} / (EXCELLENT, HIGH, GOOD, POOR);

min {0.6, 0.8, 1, 0.4} / (EXCELLENT, SUFFICIENTLY, GOOD, POOR);

min {0.3, 0.2, 1, 0.6} / (GOOD, HIGH, GOOD, GOOD);

min {0.3, 0.8, 1, 0.6} / (GOOD, SUFFICIENTLY, GOOD, GOOD);

min {0.3, 0.2, 1, 0.4} / (GOOD, HIGH, GOOD, POOR);

min {0.3, 0.8, 1, 0.4} / (GOOD, SUFFICIENTLY, GOOD, POOR)}
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Thus, we have

A3= {0.2 / (EXCELLENT, HIGH, GOOD, GOOD);

0.6 / (EXCELLENT, SUFFICIENTLY, GOOD, GOOD);

0.2 / (EXCELLENT, HIGH, GOOD, POOR);

0.4 / (EXCELLENT, SUFFICIENTLY, GOOD, POOR);

0.2 / (GOOD, HIGH, GOOD, GOOD);

0.3 / (GOOD, SUFFICIENTLY, GOOD, GOOD);

0.2 / (GOOD, HIGH, GOOD, POOR);

0.3 / (GOOD, SUFFICIENTLY, GOOD, POOR)}

The calculating alternative of utility is based on the description and tables alterna-
tives utility of sets is described by the values of ratings for each of the groups. Let it is
marked as V(Ai) as shown in Table 3.3.

Table 3.3

Utility value in the form of fuzzy sets

Ordering alternatives. Utility alternative is presented as a fuzzy set V. The next
step is to rank the fuzzy sets and to establish a better alternative. Each term utility can
be represented as a fuzzy set on the base variable U* = [0, 1]. Element of the fuzzy set
V can be represented as a fuzzy subset U* instead of U that is, if

HIGH = {1/1, 0.7/0.9, 0.3/0.8}, then 0.5 / HIGH = {0.5/1, 0.5/0.9, 0.3/0.8}.

When there is applied “rule of minimum”, it preserves the commutative, that is,
the order of calculations is irrelevant. This means that if V is calculated on the U, and

Alternative Dean’s office Group’s feature 

A1 {HIGH} {VERY-VERY-HIGH} 

A2 
{0.6 / VERY HIGH; 

0.4 / HIGH ENOUGH} 

{0.6 / VERY, VERY HIGH; 

0.4 / HIGH ENOUGH} 

A3 

{0.2 / VERY HIGH; 

0.6 / SUFFICIENTLY HIGH; 

0.2 / VERY HIGH; 

0.4 / SUFFICIENTLY HIGH; 

0.2 / HIGH; 

0.3 / MEDIUM; 

0.2 / HIGH; 

0.3 / SECONDARY} 

{0.2 / HIGH; 

0.6 / MEDIUM; 

0.2 / VERY, VERY HIGH; 

0.4 / SUFFICIENTLY HIGH; 

0.2 / VERY HIGH; 

0.3 / MEDIUM; 

0.2 / SUFFICIENTLY HIGH; 

0.3 / HIGH ENOUGH} 
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then translated into U*, so the same value will be obtained only if it is simply to calcu-
late V directly at U*. After the transfer from U to U*, the elements of V can be com-
bined using the “rule of maximum”. In Table 3.4 the results are expressed linguistically
for each alternative.

Table 3.4

 The results in the linguistical form

Fuzzy sets V (alternative utility) is useful to compare visually with the decision-
makers group as it is shown in Figures 3.25 and 3.26.

Based on the obtained features it can be concluded that the best alternative is

A1= {GOOD performance, VERY HIGH activity, GOOD discipline POOR

       material position}.

This result was obtained from the ratio

( ) ( ) ( ){ }min , ,A B A Bu u u∩μ = μ μ

where:
A – the dean’s office,
B – feature group,
u – useful to consider alternatives.

Fig. 3.25. Membership functions of linguistic utilities
(low – red, low enough – green, medium – yellow, sufficiently high – blue, high – purple)

Alternative Dean’s office Group 

A1 HIGH VERY, VERY HIGH 

A2 VERY HIGH or HIGH ENOUGH VERY, VERY HIGH or HIGH ENOUGH 

A3 HIGH ENOUGH 
MEDIUM or HIGH ENOUGH,  

but NOT VERY VERY HIGH 
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Fig. 3.26. Evaluating the usefulness of the dean’s office (a);
evaluating the usefulness of the feature group (b)

3.10. Fuzzy decision trees

Decision tree is one of the most popular options for learning and reasoning based
on examples. Specifically decision trees allow us to classify objects relying on attribute
values, from which the decision rules can be extracted. The idea of building a decision
tree is that the identified root node builds a path to the leaf nodes. Besides, in this case,
the attributes associated with intermediate nodes are identified by entropy measures to
determine the classification of the preference rating on this path. Every path to a leaf
node generates a decision rule “if... then...” used to classify objects.

On the other hand, the maintenance of fuzzy sets and fuzzy logic (see in Zadeh
1965, 1996) allowed us to obtain a general methodology that admit to consider the
concept of uncertainty and inaccuracy. Decision trees based on fuzzy set theory solu-
tions combine the advantages of decision trees and the ability of a fuzzy representation
to handle inaccurate and uncertain data see in Bezdek 1981, Borovik et al. 2013, Build-
ing Classification Models: ID3…, Chernov et al. 2016, 2015, Evans, Lohse 2011, Intan,
Yuliana 2009, Olaru, Wehenkel 2003, Rockach, Maimon 2014, Smith 2002).

The hallmark of decision trees is the fact that every example of learning sample
belongs to a particular node in the tree. However in the fuzzy decision tree, every
example is non-deterministically assigned. For each attribute you must allocate some
of its linguistic values and determine the membership degree in the examples of learn-
ing attempts. Instead, the number of individual nodes are examples of fuzzy decision

a) b)
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tree groups cases based on membership degree. The membership ratio of examples
Dj ∈ SN for nodes N and i to the target value, can be calculated as follows

( ) ( )( )min ,
N

N
i N j i j

S

P D D= μ μ∑ (3.1)

where μN(Dj) is a degree of membership of example Dj on the node N, μi(Dj) is an
example degree accessories relative to the target value i, SN is the set of all node exam-
ples N. In this way, attributes are assigned to nodes based on the lowest level of uncer-
tainty classification.

The next step will be to identify coefficient PN, which is responsible for the general
characteristics of the node N. In the example’s standard decision tree algorithm deter-
mines the number ratio of instances belonging to a particular attribute, the total num-

ber of examples. For trees the indistinct ratio N N
iP P  is taken into account to calculate

the degree of membership.
The expression shown below (3.2) gives the estimated average information num-

ber for determining a class object from a plurality of PN .

( ) 2log
N N

N i i
N N

i

P P
E S

P P
= − ⋅∑ (3.2)

The next step (3.3) is the construction of a fuzzy decision tree to find the partition
entropy for the attribute A with the values aj

( ) ( )
|

|,
N j

N N j
N

j

P
E S A E S

P
= ⋅∑ (3.3)

where the node N|j is a child of the node N.

The process of constructing the tree begins with finding the condition of attribute
that defines a root node (here and below, this process is repeated iteratively). For
determining one node, you need to calculate a classification of each attribute of ambi-
guity conditions. Determining the classification uncertainty of fuzzy partition is
reduced to selecting attribute A* with a maximum gain of information as shown in
equations:

( ) ( ) ( ), ,N N NG S A E S E S A= − (3.4)

( )* argmax ,AA G S A= (3.5)



119

Node N is divided into several sub-assemblies N|j. The degree of membership Dk

example to the node N|j is calculated incrementally from the node N as follows

( ) ( ) ( )( )| | |min , ,k k k jN j N j N je D D aμ = μ μ (3.6)

where ( )| ,k jN j D aμ  shows the degree of membership Dk to attribute aj.

Subassembly N|j is deleted if all the examples have degree of membership equal
zero. The algorithm is repeated for as long as all node examples are not classified or all
the attributes are used.

Belonging to the target class for the new data record is expressed by the following
equality

( )
( )( )

l
k l j kl k

j l
l j kl k

P D

D P

⋅μ ⋅χ
σ =

μ ⋅

∑ ∑
∑ ∑

(3.7)

here:
l

kP – the correlation coefficient examples tree leaf λ for the target class of k
values,

( )l jDμ – the degree of membership to the node example λ,

kχ – belonging the target class value k to the positive (or negative) value
classification outcome.

Consider an example. Let’s consider the situation, when applying for a job, ap-
plicants are interviewed. The result of the interview is an evaluation of the skill
level (Qualification) on a scale from 0 (no knowledge and experience for the post,
claimed by the candidate) to 10 (Expert). The second point refers to the level of salary
(Salary), which a candidate would get for the work. The third item is a rating of the
applicant.

Let’s describe the attributes : “Qualification” can be assigned with “Beginner”,
“Specialist” and “Expert” and the attribute “Salary” can be denoted as “Low”, “Medi-
um” and “High”.

The fuzzy values of the candidate’s skills levels are shown in the Figure 3.27. The
fuzzy values of candidate’s expectation of salary are presented in the Figure 3.28.
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Fig. 3.27. The fuzzy values of qualifications

Fig. 3.28. The fuzzy values of salary expectations

Suppose we have a training set of n = 7 candidates (7 rows of data see in Tab. 3.5).

Table 3.5

Training sample

We must construct a fuzzy decision tree and find the challenger ranking with
4 qualification and salary level of 25 thousand dollars.

Number Qualification Salary Rating 

0 0 9 0 

1 1 16 0 

2 4 22 0.1 

3 4.5 27 0.3 

4 6 17 0.7 

5 7.7 28 0.9 

6 9 50 1 
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The first step, shown in Table 3.6, is to find a degree of membership referring to
examples of training sample attributes, that is to find the appropriate value for a func-
tion ( )rate

i jDμ  and ( )pay .ji Dμ

Table 3.6

Values for a function ( )rate
i jDμ  and ( )pay

ji Dμ

Here ( )rate
0 jDμ  corresponds to “Beginner” qualification attribute for the j-th

data, ( )rate
1 jDμ  conform to “Specialist” and ( )rate

2 jDμ  to “Expert”. Consequently

( )pay
0 jDμ  meaning “Low” by salary attribute for the j-th data, ( )pay

1 jDμ  – “Average”

and ( )pay
2 jDμ  – “High”.

We calculate the membership function of belonging participation to successful
outcome (sum of rating from Tab. 3.5)

DAM = 0 + 0 + 0.1 + 0.3 + 0.7 + 0.9 + 1 = 3,

and unsuccessful

RNOT = (1–0) + (1–0) + (1–0.1) + (1–0.3) + (1–0.7) + (1–0.9) + (1–1) = 4.

The value of the total entropy

( ) yes yes no no
2 2

yes no yes no yes no yes no
log log ,N P P P P

E S
P P P P P P P P

= − −
+ + + +

 Qualification Salary 

Number “Beginner” “Specialist” “Expert” “Low” “Average” “High” 

0 1 0 0 0.5 0.5 0 

1 1 0 0 0 1 0 

2 0.5 0.5 0 0 0.8 0.2 

3 0.25 0.75 0 0 0.3 0.7 

4 0 1 0 0 1 0 

5 0 0.3 0.7 0 0.2 0.8 

6 0 0 1 0 0 1 

Σ 2.75 2.55 1.7 0.5 3.8 2.7 
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is equal to

( ) 2 2
3 3 4 4

log log 0.985.
7 7 7 7

NE S = − − ≈

Now let’s calculate E(SN, “Qualifications”):

( )( )beginner rate
yes 2, 0min ,j j

j
P d D= μ =∑  min(0, 1) + min(0, 1) + min(0.1; 0.5) +

+ min(0.3; 0.25) + min(0.7, 0) + min(0.9, 0) + min(1, 0) = 0 + 0 + 0.1 +

+ 0.25 + 0 + 0 + 0 = 0.35,

( )( )beginner rate
no 2, 0min 1 ,j j

j

P d D= − μ∑  = min(1, 1) + min(1, 1) + min(0.9; 0.5) +

min(0.7; 0.25) + min(0.3, 0) + min(0, 1, 0) + min(0, 0) = 1 + 1 + 0.5 +

+ 0.25 +  0 + 0 + 0 = 2.75,

Pbeginner = 0.35 + 2.75 = 3.1.

Next we calculate the entropy corresponding to the skill level “beginner”:

( )
beginner beginner
yes yes

2beginner beginner beginner beginner
yes no yes no

beginner beginner
no no

2beginner beginner beginner beginner
yes no no no

2

Qualification, Beginner log

log

0.35 0.35 2.
log

3.1 3.1

P P
E

P P P P

P P

P P P P

= − −
+ +

− =
+ +

= − − 2
75 2.75

log 0.5086.
3.1 3.1

≈

Further, for the skill level “specialist”:

( )( )

( )( )

specialist rate
yes 2, 1

specialist rate
no 2, 1

specialist

min ,  1.4,

min 1 ,  1.6,

1.4  1.6  3,

j j

j j
j

d D

d D

= μ =

= − μ =

= + =

∑

∑
j

P

P

P

( ) 2 2
1.4 1.4 1.6 1.6

Qualification, Specialist log log 0.997.
3 3 3 3

= − − ≈E  
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At the end for the skill level “expert”:

( )( )

( )( )

expert rate
yes 2, 2

expert rate
no 2, 2

expert

min ,  1.7,

min 1 ,  0.1,

1.8,

= μ =

= − μ =

=

∑

∑

j j
j

j j
j

P d D

P d D

P   

( ) 2 2
1.7 1.7 0.1 0.1

Qualification, Expert log log 0.3095.
1.8 1.8 1.8 1.8

= − − ≈E

Thus, the entropy values for “Qualification” attribute are shown in Table 3.7.

Table 3.7

The juxtaposition relating to entropy of “Qualification” attribute

The next step is the calculating the entropy for the attribute “Qualification”

( )
rate rate rate

beginner specialist expert0 1 2

yes no yes no yes no
, ualification

2.75 2.55 1.7
0.509 0.997 0.31 0.638.

7 7 7

= + + =
+ + +

= + + ≈

Σ Σ ΣNE S Q E E E
P P P P P P

On the last phase we calculate the information gain for a given attribute.

( ) ( ) ( ), Qualification , Qualification 0.985 0.638 0.347.= − ≈ − =N N NG S E S E S

Likewise we find the entropy values for “salary” attribute (see Tab. 3.8).

 “Beginner” “Specialist” “Expert” 

Ryes 0.35 1.4 1.7 

Rno 2.75 1.6 0.1 

Entropy 0,509 0.997 0.31 



124

Table 3.8

The juxtaposition relating to entropy of “Salary” attribute

The entropy value for the attribute “Salary” is calculating as follows

( )
pay pay pay

low middle high0 1 2

yes no yes no yes no
, Salary

0.5 3.8 2.7
0 0.884 0.896 0.82556.

7 7 7

= + + =
+ + +

= ⋅ + + ≈

Σ Σ ΣNE S  E E E
P P P P P P

Now, we calculate the information gain for a given attribute in the following form

( ) ( ) ( ), Salary Salary 0.985 0.826 0.159.= − ≈ − =N N NG S  E S E S  

The maximum of gathered information appoints to the attribute “Qualification”,
therefore, the partition will start with this attribute and the root node is “Qualified”.

The next step is for each value of the training sample to obtain a member-
ship degree to each node of the tree. For this purpose, the equation (3.6) is used:

( ) ( ) ( )( )| | |min , , :μ = μ μk k k jN j N j N je D D a

( ) ( ) ( )( ) ( )payrate
0 0 0 0beginner|low 0min , min 1, 0.5 0.5,e D Dμ = μ μ = =

( ) ( ) ( )( ) ( )payrate
0 0 0 0beginner|middle 1min , min 1, 0.5 0.5,e D Dμ = μ μ = =

( ) ( ) ( )( ) ( )payrate
0 0 0 0beginner|high 2min , min 1, 0 0,e D Dμ = μ μ = =

( ) ( ) ( )( ) ( )payrate
0 1 0 0specialist|low 0min , min 0, 0.5 0,e D Dμ = μ μ = =

...

( ) ( ) ( )( ) ( )payrate
2expert|high 2min , min 1, 1 1.n n ne D Dμ = μ μ = =

 “Low” “Middle” “High” 

Ryes 0 1.3 2.2 

Rno 0.5 3 1 

Entropy 0 0.884 0.896 
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Thus, we receive the following set of data training samples (see Tab. 3.9) belong-
ing to each tree node.

Table 3.9

The data training after division

For each node we can determine coefficients N
iP  in the following form

( ) ( )( )min , .
N

N
i N j i j

S

P D D= μ μ∑

For nodes with a parent root, the node has

( )( ) ( )( )
( )( ) ( ) ( ) ( )

( )( ) ( )( )

beginner
yes 0 2,0 0 2,0beginner|low beginner|middle

2,beginner|high

beginner
no 0 2,0 0 2,0beginner|low beginner|middle

begin

min , min ,

min , min 0.5,0 min 0.5,0 ... min 0,1 0.7,

min , 1 min ,1

min

= μ + μ +

+ μ = + + + =

= μ − + μ − +

+ μ

n n

P e d e d

e d

P e d e d

( )( ) ( ) ( ) ( )2,ner|high ,1 min 0.5,1 min 0.5,1 ... min 0,0 3.2,− = + + + =n ne d

etc.

specialist specialist expert expert
yes no yes no2, 2.2, 1.9, 0.2.= = = =P P P P

“Qualification” “Beginner” “Specialist” “Expert” 

“Salary” low middle high low middle high low middle high 

0 0.5 0.5 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 

2 0 0.5 0.2 0 0.5 0.2 0 0 0 

3 0 0.25 0.25 0 0.3 0.7 0 0 0 

4 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0.2 0.3 0 0.2 0.7 

6 0 0 0 0 0 0 0 0 1 
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For nodes whose parent is “Beginner”, we get now:

( )( )

( )( )

1
beginner|low
yes 2,beginner|low

0

1
beginner|low

no 2,beginner|low
0

min , 0,

min , 1 0.

n

i i
i

n

i i
i

P e d

P e d

−

=

−

=

= μ =

= μ − =

∑

∑

and so on.
The result is a set shown in Table 3.10.

Table 3.10

The juxtaposition relating to entropy of attributes

The final result can be demonstrated on the following figures (Fig. 3.28) as
a decision tree.

It should be reminded that we need to find a person with level 4 qualifications and
a salary of 25 thousand dollars. First of all, we find the values of the membership func-
tions referring to the applicant:

( ) ( ) ( )rate rate rate
0 1 20.5; 0.5; 0,D D Dμ = μ = μ =� � �

and

( ) ( ) ( )pay pay pay
0 1 20; 0.5; 0.5,D D Dμ = μ = μ =� � �

which corresponds to the membership of nodes:

– “Qualifications” = “Beginner” | “Salary” = “Middle”,

– “Qualifications” = “Beginner” | “Salary” = “High”,

– “Qualifications” = “Expert” | “Salary” = “Middle”,

– “Qualifications” = “Expert” | “Salary” = “High”.

 “Beginning” “Specialist” “Expert” 

“Low” 0 / 0.5 0 / 0 0 / 0 

“Average” 0.35 / 2.25 1.3 / 1.2 0.2 / 0.1 

“High” 0.35 / 0.45 0.7 / 1 1.7 / 0.1 
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Fig. 3.28. The final result as the decision tree
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To find the rating use equation (3.7).

( )
( )( )

,
l
k l kl k

l
l kl k

P D

D P

⋅μ ⋅χ
σ =

μ ⋅

∑ ∑
∑ ∑

�

�
�

here χk is an affiliation of the target class k value to a positive (or negative) value of the
classification outcome, in this case, it may be a decision on hiring χyes = 1 and, conse-
quently, the refusal χno = 0.

In our case, we get

( ) ( )
2 3

payrate | |
yes yes no no

0 0

l i j i j
k l k i j

l k i j
P D P P

= =
⋅ μ ⋅χ = μ ⋅ μ χ + χ =∑∑ ∑ ∑�

= 0.5 · 0 � (0 ⋅ 1 + 0.5⋅0) + 0.5 ⋅ 0.5 ⋅ (0.35 ⋅ 1 + 2.25 ⋅ 0) +

+ 0.5 ⋅ 0.5 ⋅ (0.35 ⋅ 1 + 0.45 ⋅ 0) + 0.5 ⋅ 0 ⋅ (0 ⋅ 1 + 0 ⋅ 0) +

+ 0.5 ⋅ 0.5 ⋅ (1.3 ⋅ 1 + 1.2⋅0) + 0.5 ⋅ 0.5 ⋅ (0.7 ⋅ 1 + 1 ⋅ 0) 0 ⋅ 0 ⋅ (0 ⋅ 1 + 0 ⋅ 0)

0 ⋅ 0.5 ⋅ (0.2 ⋅ 1 + 0.1 ⋅ 0) 0 ⋅ 0.5 ⋅ (1.7 ⋅ 1 + 0.1 ⋅ 0) = 0.675

and correspondingly,

( ) 1.9.l
k l

l k

P D⋅μ =∑∑ �

As a result, we obtain the value of 0.355 ranking. Thus, the applicant has excessive
demands, and the employer should refuse to accept him as a potential worker.
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4. Soft computing in data handling

4.1. Introduction to soft computing

The term “soft computing” was entered in 1994 by the founder of the field relating
to fuzzy logic – Lotfi A. Zadeh (see Yager and Zadeh 1992, Zadeh 1975, Zadeh 1996).
This specified term stands for the set of empirical, indistinct, approximate methods of
solving tasks which do not have exact decision algorithms for polynomial time (which
operating time is polynomial depending on the size of the input data). Now, it is
accepted to enlist the following methods to soft computing:

– neural networks,

– evolutionary strategy,

– fuzzy logic,

– multiagent systems (intelligence of pack),

– different heuristic algorithms of finding solutions,

– chaos theory, etc.

Many of the algorithms used in this study refers to the intellectual category.
But the term “intelligence” (and “artificial intelligence”) is so fuzzed away now that it
would be desirable to take AI into account.

We assume that the term “intelligence” as a property is a way to solve intellectual
problems. We assume that an intellectual task is a task for which solution like an accu-
rate algorithm has been not invented yet. In other words, the intelligence is a property
of the person, the computer or something else, allowing to create new algorithms.

Such a determination at once allows us to cut down on a set marketing (in negative
sense of this word) i.e. the determinants of intelligence tied to laundry detergents,
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drugs and another goods, etc. Also it is interesting to apply this determination to hu-
man professions as follows:

– Programmer. A programmer’s product is the program – an algorithm in pure
form. I do not think that there will be someone who will be able to claim that this
profession is not intellectual even though we need to adjust given program to in-
put and output data. For example, in the program there is a piece of a code solving
already an existing problem. The programmer takes it, changes several symbols
(constants) and receives the duplicated code adapted to new subject domain. It is
about a typical sin of copying/pasting. Let’s not argue on shortcomings of such
approach here – we will look at it on the other hand. The copied algorithm has
been improved. The meaning of such duplication, intellectuality is close to zero.

– Hacker. There are typical schemes when crimes are committed on knurled tech-
nology. In this case an impressive intelligence is not necessary. Such hackers usu-
ally create systems to break in sooner or later. But there are also “stars” among
them who come up with the unusual and unrepeatable solutions. Actually,
new algorithms have been continuously written. The hacker intelligence is much-
-needed all the time.

– Detective. Perhaps, one may say, that the profession of the detective and hackers
makes synergy couple. Hackers’ job is more intellectual, while detective job calls
for the more intelligence in order to deal with the criminals, to ask them questions
and invent responses based on non-standard methods of search.

– Cashier (bank, shop, etc.). In this profession the invention of a new algorithm is
somehow wrong. Everything needs to be done carefully, accurately and equally.
I do not want to tell at all that cashiers are stupid people. To learn this work,
the intelligence is necessary. Often considerable. But during the work “block”
of algorithmization needs to be switched-off. Therefore I cannot call this profes-
sion intellectual according to the accepted determination.

– Driver. A combination of advance algorithmic activity (observance of traffic regu-
lations, standard acceptances of driving) and permanent search for algorithms
of the solving arising problems. Recognizing a road situation at a large number of
the participating objects moving diversely with different speeds, searching for
an optimum route at the movement in the unfamiliar place, responding to the
changed traffic conditions in already familiar places (holes, repair of the road,
new road signs). It is no wonder that this activity has not automated up to the end
yet, there are only separate components helping to solve of separate tasks, for
example, GPS navigators.

Thinking of intellectual features among professions (in the sense of using intelli-
gence) can be finished – the reader can analyze the directions interesting to him on his



131

own. Also, we had an additional criterion for evaluation of intellectual activity that is:
the more automated this field is, the more intellectual it becomes (it is temporary crite-
rion while the human is the most intelligent “device” on Earth). By the way, there are
attempts to automate difficult activity – it is possible not only to increase intelligence of
the car, but also to reduce the intelligence of task. For example, it is rather difficult to
automate cultivation and harvesting on any field on the open area completely – there
are too many unknowns. However, if you prepare the field “in line” in advance, placing
all plants in the greenhouse, then complexity of a task will be reduced. It will become
more solvable. As a result, your intelligence will be demonstrated through a proposed
task simplification.

Let’s go back to the methods called “soft computing”. The fact that they are asso-
ciated with intellectual tasks is connected, most likely, with the fact that they have high
universality and can be applied before developing the good specialized method of the
task solution.

Other important general property of soft computing is property of adaptivity –
fine tuning under a task. It increases the level of assessment(which is often also con-
nected with intellectual activity) of the solution of a task and reduces complexity of
a task for the researcher. Presently, it can work with a task like a black box (a system
with an unknown algorithm whose essence can only be guessed based on external fea-
tures) or a gray box (a system with the possibility of limited configuration by the user),
without going into the subtleties of work related to the management system, in hope
that these subtleties will be compensated by “intelligence” of the method.

For this reason, the ownership of the listed methods is a big plus for any research-
er, the programmer, the scientist, the engineer, the analyst.

The consequence relating to the universality of the methods, is an opportunity to
mix them. It is often possible to come across such systems where the neural network
stands for a genetic algorithm. Indistinct qualifiers are a basis of individuals in multi-
agent systems.

4.2. Evolutionary calculations

4.2.1. General Introduction

Evolutionary methods have been continuously driven by nature have been used
for more than one billion years. Certainly, it is about natural evolution. This process,
according to most of scientists, eventually gave us Homo Sapience used as an intellec-
tuality standard. Certainly, there are people who do not agree with this point of view.
Well, we will not argue with them. Even, if they are right, algorithms which are received
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as a result of modeling of these “wrong” processes show the efficiency in many tasks.
And that is enough to give the right to use these algorithms.

The first scientist who offered the harmonious theory of an origin of new types
was Charles Darwin. In the textbook “Origin of species”, which came out in 1859,
a basis of evolution fall into the following processes:

– variability – new individuals of population practically always differ from the par-
ents a little (and it is sometimes strong);

– selection – natural or artificial selection eliminates unsuccessful options of changes;
only the successful (more adapted) ones remain to live;

– heredity – the changes which happened in one of generations are inherited by the
descendants.

The set of these driving forces also allows types to adapt themselves to the chang-
ing environment, to be improved and survive. But at the Darwin’s times, only the selec-
tion mechanism was clear. Then new signs appeared and as they were transferred to
descendants, they became clear much later. In 1944, O. Avery, K. MacLeod and
M. McCarthy (see Avery et al. 1944) published results of the researches. They proved
that “the type of Deoxyribonucleic acid” is responsible for hereditary processes in
organisms. What acid is, the world learned still later – on April 27, 1953 the well-
-known article of Watson and Shout was published in the Nature magazine, and the
world heard about a two-chained spiral of DNA for the first time.

More than half a century have passed since the discovery, but still it is impossible
to tell that we know everything about DNA functioning mechanism. We constantly
learn about new and new details. That different sites of DNA are mutated with a dif-
ferent frequency. The fact that many genes can be present at DNA in different number
of copies (copy number variation), and in products of one or another protein, sensitiv-
ity to various diseases may depend on it (see in Bentley and Wakefield 1996).

We are still getting familiar with natural processes, which from the very beginning
attracted researchers who wanted to repeat similar process using the computer facili-
ties. Presently, the huge number of different algorithms have been collected. Of course
it is believed that transfer of the major directions, beaun with genetic algorithms and
Holland’s classification systems (Holland 1994). For the first time they were published
in the early sixties, but they gained the largest distribution after publicizing the book
becoming classics – “Adaptation in natural and artificial systems” (Holland 1994).
Next L.J. Fogel in 1966 (Fogel et al. 1966, Fogel 1999) applied one of the first evolu-
tionary algorithm in practice. A tree-based genetic programming was introduced
by N.L. Cramer in 1995 (Cramer 1995). These ideas gained further development
in the works (see Banzhaf et al. 1998, Bentley and Wakefield 1996, Bisebroek 1999,
De Jong and Spears 1991, 1992, Goldberg 1989, Goldberg and Sastry 2001, Koza 1992,



133

Mitchel 1996, Whitley 1994, 2001) devoted to evolutionary modeling. It was necessary
to find a solution of a global extremum problem on the basis of a set of independent
automatic machines. In result simultaneously processes of the birth, development and
death of individuals were modeled. Also a big contribution to development of evolu-
tionary calculations was made by Fogel et al. 1966.

Each of these schools took something special from the principles of evolution,
known at that time. After that it was simplified to such an extent that process could be
remodeled on the computer.

Along with many empirical algorithms, evolutionary algorithms do not guarantee
finding a good result. Also they seem to be difficult when it comes to the use. Through
selecting the wrong degeneration parameters, an incorrect search capability can be dis-
played. In this case you should not throw evolutionary algorithms at once – it is worth
trying to help their natural intelligence (for example “play” with the settings). Here it is
good to remember that if any type remains in very little amount– less than ten individu-
als, then in the nature it is doomed to extinction because of degeneration. But it is better
to remember bodies of the birds, strange in shape and their wings, echolocators of dol-
phins and bats, the black mold using the radiation energy of the destroyed reactor.

4.2.2. Genetic algorithm

The genetic algorithm (further GA) is one of the most known evolutionary algo-
rithms. It is simple in the principles of work, but has a high potential of development,
as we will try to show in this section. More details and explanations can be found for
instance in Fogel et al. 1966, Fogel 1999, De Jong 1975, De Jong and Spears 1991,
1992, Deb and Agrawal 1999, Duda and Szydło 2011, Goldberg 1989, Goldberg and
Sastry 2001, Koza 1994, Mitchell 1996, Whitley 1994, 2001.

In essence, GA is an algorithm that is used for searching a global optimum of
multiextremal function. For this purpose it uses, with a certain extent of approach,
model of reproduction of live organisms. To solve a problem, we need to present it in
the form of so-called fitness function from many variables (also called estimated)

( )1 2 3, , , ...., .Nf x x x x

To solve the task, we need to find the global maximum or minimum (it is not fun-
damentally important which task we solve, because the search for the maximum can
easily be replaced by the search for the minimum – and vice versa – for the same func-
tion – just include the opposite sign). At the same time certain restrictions are usually
imposed on values of entrance variables, at least on the range of their change.

Before we consider the GA, we need to present all entrance variables in the form
of chromosomes. Chromosomes in GA are meant as chains of symbols with which
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further transactions are made. Most often apply the following two methods of parame-
ters coding are applied (see in Janikow and Michalewicz):

– binary format,
– format from a floating comma.

When using a binary format, under parameter N bits are allocated (for each pa-
rameter N can be different). As for each of these parameters there are restrictions by
MIN and MAX, mutual transition between parameter values in a format with a float-
ing comma and their binary representation can be written down in the following type:

g = (r – MIN) / (MAX – MIN) · (2N – 1),

r = g · (MAX – MIN) / (2N – 1) + MIN,

where:
g – the binary representation of parameter placed in N bits;
r – a parameter value in a format from a floating comma. We often use the sub-

sequent transformation of the gained binary impression to Gray’s code – it
allows to reduce the destructive force of mutations (here we run a little
forward).

The received binary representations of each parameter spread into a chain (line)
of bits which farther is called a chromosome.

While working with parameters in a floating comma format, their value also gives
the best in the bit chain, but without the transformation mentioned above, only directly
in the representation with which the computer processor works.

After codding all necessary parameters in the form of a chromosome, we can start
a basis cycle of a genetic algorithm:

1. Generation of initial accidental population.
2. Generation of the next generation.
3. Rejection of the worst decisions in again generated generation.
4. If do not reach criterion of the termination, we drop into a step 2.
5. Work completion. The copy which has the best value of fitness function is the re-

quired decision.

Here, of course, the stage 2 is the key. It can be detailed as follows:

1. Sort parent generation according to value of fitness function for each copy.
2. Enough copies of new generations have not generated yet:

2.1. Select two parents.
2.2. Combine their chromosomes (crossover).
2.3. Apply other genetic operators.
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Let’s describe each of generation steps in details.

2.1. For selection different strategies are used. One of them is to choose N best
copies in a random way. Another one is a tournament in a broad meaning. It is that
for each of parents accidental couple (or more) of applicants is chosen. We choose
from them the ones with the best value of fitness function. Thus, more adapted individ-
uals will be more often parents. It is worth noticing that less adapted ones also have
chance to pass.

To accelerate the convergence the strategy of elitism is also often used – in the
next generation the best available solutions of the previous generation (elite) are
adopted without changes. But with this approach it is necessary to be extremely careful
– in case of insufficient size of population, it becomes similar to elite very quickly and
search of new decisions practically stops.

2.2 and 2.3 – application of genetic operators. A basis of GA are two operators:
the crossover which combines decisions of parents, and a mutation which provides
search capabilities. Apart from these two main operators additional operators, for ex-
ample, inversion can also be applied.

The operator of the crossover works with bit lines of two parent chromosomes.
The simplest option is the single-point crossover. In this case each of parent chromo-
somes is cut in one, accidentally chosen point. The chromosome of the descendant is
formed from “head” of a chromosome of one ancestor and “tail” of the other:

Ancestor 1: 1001101110101|100110 

Ancestor 2: 0010110010110|010101 

� 100110111010 1010101 

The operation of the crossover can be more difficult – considering two-point
crossover or even can use absolutely other principles (we still will return to it). The
main thing is that combined ancestors’ and descendants’ decisions do not mean finding
successful solutions again.

The operator of the mutation is simply a random chromosome change in one or
more bits:

100110111.0101100110 � 100110110.0101100110 

Mutation – the destructive operator. In most cases, it violates the decision or even
leads an individual to a disabled state. Therefore the probability of its application
should not be excessively high. But lack of mutations nullifies capability of GA to
search of a global optimum in all decision spaces.

� �
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Given as an example of additional operators, the operator of inversion consists of
cyclic shift of bits in a chromosome that occurs accidental number of times

1001101110101100110 � 0110100110111010110 

Now we have all components of a genetic algorithm, and we can fix them in practice.

4.2.3. Simple example of implementation of GA

Let’s try to find a global extremum of one of test functions. It is known under the
name DeJong 2 (see in DeJong 1975, DeJong and Spears 1991, DeJong and Spears 1992)

( )
( ) ( )

2 22

100
, .

100 1 1
f x y

x y x
=

⋅ − + − +

This function is gully with rather small inclination around a maximum. The maxi-
mum of function is equal 100 at x = y =1 value. Of course, we will pretend that we do
not know it, it is only known that the maximum is at parameter values (and “x” and “y”)
somewhere between –1.28 and +1.28.

The proposed program is concentrated on the algorithmization. Because of it, and
in connection with an educational orientation of examples, the main settings are set in
the text of programs in the form of constants. On a slang of programmers, parameters
of this program are “hardcoded”. However it will be minus if the user of the program
does not need to have access to a program code. We hope that such access will happen
rather actively therefore editing of parameters in the text of the program can quite be
considered a peculiar interface for the programmer. Thus, as the user’s interface to
change of parameters, we will use IDE for example, JetBrains PyCharm Community
Edition with Python 3.7.

Let’s define how we will represent a genome. In the first example we will apply
a binary method relating to coding of a genome, without use of a Gray’s code. We will
store a chain of bits in the “int” type, and, in big-endian 16 bits will be responsible for
parameter x, and little-endian – for parameter y. As value of fitness function on which
it is necessary to make selection of the most adapted copies (sorting), conveniently
a genome and this value is also tied to each genome to combine in one record.

Let’s define the fields and constants used further:
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The basis cycle of work of the program is concentrated in the Main method:
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Above we see a challenge of accidental initialization relating to starting genera-
tion and generation of the sequence of affiliated generations. The criterion for stop-
ping creation of generations is reaching a certain number of generations. At the end
of a cycle we remove parameters of the best copy in a console conclusion. As the collec-
tion of copies is sorted by fitness decrease, the copy with number 0 will be the best.

Let’s go through the caused methods now. Generation of the first, accidental gen-
eration:
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Here, and in the procedure of generating the new generation, we generate dou-
bled number of individuals, that will participate in a tournament. Thus, we reject the
most unadopted individuals (“freaks”) who “are absolutely impractical”. The following
method is engaged in this initial rejection:
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The above-mentioned procedure is able to sort a collection to genomes (are used
rather short in record a lambda expression). As a result, the necessary quantity of the
most well-adapted individuals is left.

Let’s stop a little on the weightings procedure – fitness function calculations. It is
carried out by the “Weight” method which as a parameter accepts a chain of genome bits:
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Let’s stop a little by the “GetX” and “GetY” methods. They take from a genome
(32 bits) the part responsible for storage of parameters x and y, respectively, then they
transform it into a floating comma format. At the same time the formula of transfor-
mation of representation from the previous section where MIN = –1.28, MAX = 1.28,
N = 16 (bit on parameter), 2N = 0×10000 is used.

And, at last, procedure of generating the new generation can take a following
form:
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The above mentioned method focuses on elitism selection, the tournament choice
of ancestors, the crossover (single-point) and a mutation. Also, at generation of zero
generation, this method generates doubled descendants, than it will be used for gener-
ating the new generation further. Our method (which is already considered above)
“SortGeneration” will be engaged in this excess again. At those settings which are
specified in the program the option called GA with elitism will be used. In our case, it is
that one most adapted individual with a guarantee is introduced to new generation.
Such an approach guarantees that the result will not be deteriorated from genera-
tion to generation, but often provides higher starting speed of decision search. At the
same time, it can disturb more complete research of a decision space and accelerate
degeneration of population. The reader can independently experiment with different
settings and observe how they influence on the quality and the speed of finding solutions.

Having started the program with the given settings, it is quite often possible to
receive here such result:
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The specified parameters x and y are the closest node to number 1.0, from a set
of nodes which appear after splitting an interval [–1.28, 1.28] onto the 216 pieces.
This result can be observed not always – we work with probabilistic (well, pseudo-
-probabilistic) process so we use a random number generator (class Random). And the
decision space which needs to be investigated is rather extensive.
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Of course, example is not the most difficult. It can be solved by different analytical
and gradient methods. But if for you it is possible to bring parameters into a chain of
bits and to code fitness function, and also arrange suboptimal value, then you can do
without analysis of function on an extremum or that gradient method. If you do not
have this knowledge, then such an approach will represent the costs connected with
a challenge of the specialist or with independent deeper studying of subject domain.
Of course, it is not free – at the expense of you as a specialist in programming and
extremely irrational use of computer facilities. What is more, in each case you decide
individually. But availability in your arsenal of such intellectual assistant as GA, will
not disturb the precision.

4.2.4. Closer to reality, or the space crossover

Tasks similar to the solved in the previous section, a problem of searching an ex-
tremum of the test DeJong 2 function (see in De Jong 1975, De Jong and Spears 1991,
De Jong and Spears 1992), are included in manuals on GA. It is clear why, the problem
is foreseeable, the answer is known as well as easily checkable. At the same time, such
examples leave dual impression. It is often easy to solve them also with others, simple
methods – from accidental search (Monte Carlo method) to gradient methods such
as coordinate optimization. On the contrary, they are difficult to solve by any methods.

The power of GA is revealed in examples in which the modeled system is divided
into subsystems where solutions can be found in parallel. Often for overall perfor-
mance for a specific objective, it is necessary to adapt classical genetic operators to
invent new ones.

Other important point is that in real tasks the most labor-consuming part of pro-
cess of the miscalculation is not a creation of a new generation or an assessment of
fitness for each individual. Therefore some complications of the scheme of creating
new generations slightly increase integral labor input of an algorithm, but also increase
an “exit” of good descendants. Contrary to appearances, these complications greatly
reduce the algorithm’s complexity.

Let’s try to show all this on the example of solving the task which is brought closer
to real. So, the task is:

We are at war. Our opponent’s troops are unevenly located in a certain territory
with weapons: 10 warheads of nuclear weapon. It is known that during the explosion of
a warhead in blast radius, there is nothing left to live. Let’s just consider that beyond
this radius, the enemy’s fighting units remain live. Our task is find such coordinates for
each warhead that the opponent after the blow would have as few troops as possible.

Of course, at your more pacifistic moods, the same task is possible to said in other
words:– there are funds for construction of 10 shops in a certain district of the city.



141

People are ready to go to the shop located not further than M meters from the house
(by the analogy for the blast radius). People live unevenly on the chosen area. Your
task is to arrange shops so as to cover the greatest number of inhabitants.

Further, in the program text, the names of identifiers are chosen from the first
formulation of the task, but it will not mean specialization only for the first option of
a specific problem.

The input data are images in the PNG format. This format is used because it can
be squeezed without the loss of information, and it is important for determining
a brightness of points. Fighting unit of the opponent is coded by a black point (bright-
ness color a component in RGB – 0, 0, 0). We will show the territories covered with
explosions in “tomato” color. Such a method associated with the submission of input
data gives the chance to see the received result, and also to involve the graphic card of
the computer in the assessment of the received result. It is possible just to draw the
filled-in circles with a radius equal to the bomb blasting radius over the source image.

This time the program will present a WinForms-application with only one window
as it is quite curious to watch dynamics of work of a genetic algorithm. And it is not
really convenient to estimate the result only for the numbers running in the console in
this case. Different application settings, as well as in the previous example, can be
changed directly in the text of the program, using the IDE editor.

First of all, we will decide what option relating to coding the information within
chromosomes we will use. The simplest option is to code coordinates in a sequential bit
line as it was shown in the previous section. After that, it is possible to apply ordinary
operators of the crossover and a mutation. But, practice shows that in such cases there
are often different problems – a problem of the competing decisions, or a low quality
of synthesizable decisions. Specifically, these problems are described in De Jong and
Spears work (De Jong and Spears 1991). In the same paper also one of possible ver-
sions of solving these problems (the crossover based on space provision of decision
points) is offered. Further in abbreviated form we will call it the space crossover.

So, we will store the data relating to one point in the form of not divided data set.
In biology such signs are called linked because they are transferred to descendants, as
a rule, together i.e., in our case it will be plane coordinates on X and Y axes.

In the program one “explosion” corresponds with the following class:
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Explosion coordinates are stored in this class (X, Y), and also this class provides
several supplementary methods. The class “TaskSpecification” mentioned in one of
methods above stores some restrictions and entry conditions of a task:
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Above there are coordinates of borders beyond which it is not necessary to go
at an arrangement of explosions (bound property), quantity of warheads (actually,
it is genome length), defeat radius of each warhead and the original field of battle
on which troops of the opponent are marked out and are provided sequent one
after another.

Before giving a code of a class responsible for genetic information storage individ-
ual and working with it, we will look what means the space crossover.

As it was already mentioned above if we get the list of spatial coordinates of two
good, and different parents to apply regular one- or the two-point crossover, then,
most likely, we receive the impractical descendant. Here are two basic reasons. First of
all, at different individuals the same point can be stored in different places of a ge-
nome, and, at exchange of genetic information, we can place almost nearby geometri-
cally two points which are in different places of a genome of parents. At the same time
some other site will become bare. First, the genetic algorithm will spend all the power
for selecting a successful method of coding coordinates, and, only then if, by this mo-
ment, there is no populations’ degeneration yet, genetic algorithm (GA) will basically
initiate the search of the successful decision. It is also a problem of the competing
decisions – when it comes to the same decision there the set of methods relating
to coding of this decision can be applied in a way which significantly increases the de-
structive property of the crossover.

The second problem is that if to pay attention only into place where the point in
a genome is located, then the crossover will randomly take the points from one parent
decision and from the decision of other. These points will be scattered on all search
space. However it is clear that the points located close to each other often form pecu-
liar sub complexes of decisions which support each other. And accidentally withdrawal
or addition points in such a set of points significantly worsens the quality of decision.

Both of these problems are solved by the space crossover. During the work, it is
guided by provision of points within the space of a solvable task. On the following
sketch the scheme of consolidation of two parent genomes is shown below (see Fig. 4.1).

The space crossover consists of the following steps:

1. We choose any (accidental) point in space of a solvable task.
2. For both parents we cut out identical (on coordinates of the center and radius)

circles (the sphere or a hypersphere for spaces with dimension more than two).
3. From one parent we take points which lie in a circle, from another – outside

points.
4. We combine the taken points in one decision.
5. We adjust quantity of points in the descendant – we delete (in a random way) if

they are superfluous, or we add the points that we have not used yet.
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Fig. 4.1. The scheme of the space crossover

This approach allows to preserve more developed local ensembles of points more
likely (in comparison with the ordinary crossover and method of coding).

Now, after short examination of the scheme referring to the space crossover, we
can consider the chosen places of the class Individual. At the same time we will pass
supplementary small methods not connected directly with GA to the place of a portrayal
of images.

First of all, the genotype is stored in the list of points of explosions. There is also
a field to which the fitness degree of an individual is brought. For us this is a number of
black points that remained after explosion.
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The first generation (see more in Diaz-Gomez and Hougen 2007) is created in
a random way by means of the static “generate_random” method as follows:

E�	�	�:��	'�

��
 ������	������������ 
 ���:�
 #��2F��:���:�	�����

�����	
�
B��&������

���
 �
 ��
������� 
���:��*�����	�������������

�����	�������7*��������������	�����������:��

����

Now we will consider implementation of genetic operators. The mutation is sim-
ple. Any point of the decision is replaced in a random way. For our case it is sufficient,
but for a large number of points (hundred, thousands of explosions) it may be neces-
sary to extend the implementation so that it can place more points at once.
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The code of the space crossover is longer. It can takes the following form:
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Here we see all those steps which were described for the space crossover. But
there is also a feature. At addition of points from ancestors, we measure distance to
a point in L1 space (the Cityblock metric). It can be noticed, having analyzed a frag-
ment “radius > math.abs(sp.x – x0) + math.abs(sp.y – y0)”. Essentially it changes
nothing, just the squares (turned by 45 degrees), but not circles will be cut out from
space of parents.

Also, during the initial testing of an example, it turned out that after initial
progress and finding the most perspective configurations of decisions, there was an
extremely slow process associated with the adaptation of received decisions, generally
at the expense of a mutation. But the mutation in the form, in which it was stated
above, is a rather rough medium – instead of one explosion we receive another one
randomly. And the probability of a slight correction of the previous one is very small.
Therefore, one more operator which is called Stepping was added to this example.
Actually it is also a mutation, but a soft one which slightly displaces an explosion to
which it is applied:
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Let’s take a look at what turned out. The source image (it is possible to find
in the list of initial files of an example under a name 128 × 128_2.png) has the size of
128 × 128 pixels. Initially on the image of 5910 black pixels which we also should “cover
with explosions” as much as possible.

Fig. 4.2. Initial area for defeat radius

Radius of defeat area – 12 pixels, the number of explosions – 10. The population
size – 1000 individuals. The elitism, tournament selection for 500 best individuals was
used. Probability of use of the space crossover – 0.4, mutations – 0.1, a stepping – 0.3.
Of course, at each start results will differ a little – we deal with probabilistic process.

Fig. 4.3. Results of applicating an evolutionary algorithm

the best representative of
zero (accidental) generation.

Quality 3435

the best representative
of the 5th generation.

Quality 3170

the best representative
of the 20th generation.

Quality of 2688

the best representative
of the 100th generation.

Quality of 2214

the best representative
of the 500th generation.

Quality of 2153
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Work with the program happens as follows – we start application, we load
the necessary picture (“Loadsample” button), we start evolution (we press the
Start button). The current result of evolution is reflected in a main window of
the program, and intermediate results are registered in the same catalog from which the
picture was loaded (the file with the same name and the TXT expansion, and also
png-pictures).

In the given example only one of possible adaptations of GA to practice was
shown. The nature is only an initial role model, but we are not obliged to copy all de-
tails. It is enough to observe only the basic principles and use common sense. Let’s
enlist (in Tab. 4.1) some principles allowing to achieve a faster convergence of evolu-
tion process or to improve quality of a subject domain research.

Tabela 4.1

The list of principles improving the algorithm convergence

4.2.5. Genetic programming

The above mentioned genetic algorithm, works with information coded in genes.
What information, in general, is not important? For example these might be the pro-
cessor commands of a computer. The program and the quality of the received individ-
ual will depend on how efficiently this program comes to an objective. The main minus
will be the fact that length of the program will be fixed. And classical genetic operators
do not promote high probability of the appearance of efficient descendants.

Therefore other algorithms have been developed for evolutionary programs
developing (in comparison with GA) genome storage methods and other imple-
mentations of genetic operators. Chronologically, the tree form of a genome storage
was the first form (Fig. 4.4), offered by N. Cramer (Cramer 1995, Koza 1989, Koza
1992, 1994).

Acceleration of convergence  
of the decision 

Improvement of the work quality  
(search capabilities) of GA 

–  Increase in pressure of natural selection 
      Reduction of quantity of the indi-viduals 
        .allowed to reproduction 
      Use of elitism 
      Reduction of total quantity of the generated  
        .posterity 
–  Algorithm execution in parallel on several 
    computers (processors) 

–  Reduction of pressure of natural selection 
–  Increase in volume of genetic material 
–  Diploid GA (also increases amount of genetic 
    material, see in Bara’a 2004 
–  Splitting population into parts. It also is method  
    easy to parallelize an algorithm 

 

•

•
•
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Fig. 4.4. The algorithm of calculation of value of function (a–15)(b/(a+c))
presented in the tree form

Apart from other forms, which are also often used, we can distinguish linear
(Fig. 4.5) as well as network (or graph) forms (Fig. 4.6).

Fig. 4.5. The algorithm of value of function (a–15)(b/(a+c))
presented in the linear form (a code of some virtual processor)

Fig. 4.6. The genome of the small program for the virtual processor
presented in the network (graph) form
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Transaction of a mutation, in case of the genetic programming (GP), is similar to
close transaction at GA, but a variety of changes which can be brought into a genome is
added. For a linear genome, for example, to random change of any team, transactions
relating to an insert of accidental team or removal in the accidental place are added.

A bit more difficult is also a transaction of exchanging genetic material in ances-
tors – the crossover looks as if the basic principle remained the same and was a part of
the genome of one parent and a part of the other. Let’s give examples of the crossover
for linear (Fig. 4.7) and treelike (Fig. 4.8) representation of a genome.

Fig. 4.7. The crossover for the linear representation of a genome

Fig. 4.8. The crossover at the treelike representation of a genome
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Transaction of the crossover is extremely destructive for usual programs and the
overwhelming number of descendants after such transaction become impractical.
Therefore, researches often enter unusual transactions into system of teams, for in-
stance, transition on complementary tags (see for instance De Jong and Spears 1991,
1992), the automatically defined functions (ADF) (see for example Ferriera 2006,
Federicks and Chen 2013) and a lot of other improvements.

Programs also “fight” against what destroys them. For example, they increase
quantity of introns – pieces of a code which contain nothing related to the transactions
(see in Bentley and Wakefield 1996, Goldberg and Sastry 2001):

�!I#
�!I#
K��

�M!D=
�I�
K
K��

�3=
�6K
K��

�3
K
��

�+
K
��

�+=
�DBN
K
K��

�OIN7PC7@#
 OIN7P�B�Q#�

�B@
�����=
K�

�M�
�
M�

Such method of protection (as well as duplication of the most important sites
of a genome) is not the invention of GP. Similar mechanisms are available also in
genomes of usual cages. All subtleties of genetic programming can be examined as
a subject of the separate book (and not the one). Therefore we will recommend the
interested reader continuing this study on more specialized literature. Good introduc-
tion are works: Bentley and Wakefield 1996, Goldberg 1989, Goldberg and Sastry
2001, Michelle 1996, Whitley 1994, Whitley 2001. Specifically we will review rather
simple example of the search for the decision related to a genome of variable length.

4.2.6. To be, or not to be…

As it was told in the famous Soviet movie – “friends, but whether not to threaten
to us on William of our Shakespeare?” Also we will try to perform onstage using im-
mortal monologue “to be or not to be”. And method which we intend to implement
could be certainly used by Johnathan Swift1 as well.

1 The work “Gulliver’s Travel” where the inventor who constructed the car generate acciden-
tal combinations of all existing words and describe their meanings. Those intelligent sets
were registered to create the complete encyclopedia of all sciences and arts. Of course,
Swift in this case criticized this direction – but he then knew nothing about genetic pro-
gramming.
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Let’s consider the following task. We need to guess some phrases. To find out,
if the algorithm guessed the phrase or not, we take any line, and determinate a number
(fitness function) which represents the difference the number of letters standing on
their places, with those that do not take their position:
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Here “a” stands for line sample. It is known only to the calculator of fitness func-
tion. “b” – a line which we showed for assessment; length() – the function calculating
length of the transferred line. An indexation of symbols begins with a zero position.

Having only such scanty data and the approximate size of the text, we will try
to guess the phrase from the immortal work. Namely, Hamlet’s monologue to be, or
not to be can be taken into account. The text of the monologue is taken from the
https://en.wikipedia.org/wiki/To_be,_or_not_to_be page, with all punctuation marks.

The appendix “SimpleGP” is an object oriented application. All data and settings
are hardcoded therefore if we intent to change them, it is necessary to use IDE and to
recompile the program. Let’s start with the point of entry in the program – the
“main.py” file:
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The “__main__” method includes generation of zero generation and a basis cycle
– generation of new generations. The cycle is interrupted when the exact phrase is
found – it is stored in the class “GPWorld” constant “SECRET_PATTERN”. But this
storage location is chosen only for simplification of an example. Basically, the source
text can be stored anywhere on other computer. The main thing is that the program has
two options to execute: comparison (as condition of the termination of a cycle) and
similarity assessment (fitness-function calculation).

The “WriteWorldState” method brings the best representative of the current pop-
ulation to the console.

In the class “Program” two more classes are used: the class “Individual” (encapsulates
an individual) and the class “GPWorld” (encapsulates population and transactions over
it and separate individuals). Let’s consider them in more detail. “Individual.py” can
take a following form:
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The above mentioned class is simple. In the fields of the class, we store only
a genome (line) and the cached value of fitness-function (generally for sorting individ-
uals within the population). The main logic of genetic transactions is concentrated in
the “GPWorld.py” file.
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Here we are going to reduce a multi lowercase line literal. It can be seen complet-
ed in the initial files attached to the book. Also, it is possible just to start the program
and to wait for its termination.
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This block of constants stands for setup relating to parameters of an example.

��
 �����	���������

�����������	���
 �
 �AT����������	��������������	�����

�����������	�������	�2��������
 ������	�
 ������	���	���� 
 ��&�����#����

The designer generates new accidental population. Next they are sorted by fitness-
-function in decreasing order.
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The supplementary method “random_possible_char()”, as its name suggests, re-
turns accidentally chosen symbol from all possible.
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The variable chars sets the list of possible symbols which can occur in the required
phrase. In this case we were limited to the English alphabet, punctuation marks, as well
as a gap and line feed.

The “calc_fitness()” method calculates fitness-function according to the verbal
description set at the beginning of the section.
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The “next()” method generates a new generation. The accepted parameter of
Boolean type specifies whether the strategy of elitism is used. If it is used – one best
copy of the previous generation with guarantee passes into the following without
changes. The selection is made by a tournament method for representatives of the
most adapted half of the population. Thus, selection pressure amplifies a little.
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The “mutate()” method with an equal probability carries out transactions of an
insert of an accidental symbol, removal or replacement.

��
��	�	���������
�	���

��
�������������
8
��//�

���
�
�����������	�� 
 ������������

������
�
������(�����)
3
������(����)

��
�����������
1
�
��
�������������
8
��//�

���
�
 ���������������� 
 ������������

������
�
������(����)
3
������(���
3
��)

��
�����������
1
�
��
�������������
8
��//�

���
�
 ���������������� 
 ������������

��"�������
�
$$

���
�
��
������� 
�������������

��
�
U�
����

��"�������
3�
������(�)

�����

��"�������
 3�
 �AT�������������������:'����

������
�
��"�������

��	���
������

Transaction of the crossover is similar to the single-point crossover at usual GA,
but is adapted for processing of genomes of variable and unequal length. The resulting
genome has length equal to genome1. If the second genome is shorter, then accidental
symbols from a set of admissible are added to a line. If it is longer – than only a part of
symbols within length of the first genome is used.
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In this sale of the crossover there are no transactions which lead to shift of line
fragments either at the beginning or at the end. It is connected with the fact that esti-
mated function estimates only the symbols which precisely got to the position. There-
fore any shifts bring the fact that in each case genome is damaged. Similar transactions
(as it is shown in Fig. 4.4), are possible to be implemented independently together
with fitness-function modification. In this case fitness-function should add points to
a genome if it includes sublines, even if they do not stand on the places.

So, now we are ready for start. We start the program watching algorithm’s work.
The following results are received of this program:
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Generation of 1426:
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4.2.7. Diophantine equation

In the last paragraph, dedicated to genetic algorithms, we would like to present an
example of solving a Diophantine equation using, probably, the most powerful and
true Python library – DEAP. DEAP is an innovative evolutionary computating plat-
form for rapid prototyping and testing of ideas. It seeks to make algorithms explicit
and data structures transparent. It works in perfect harmony with parallelization
mechanisms such as multiprocessing and SCOOP.

In mathematics, a Diophantine equation is a polynomial equation, usually with
two or more unknowns, such that only the integer solutions are sought or studied (an
integer solution is such that all the unknowns take integer values). A linear Diophan-
tine equation equates the sum of two or more monomials, each of degree 1 in one
of the variables, to a constant. An exponential Diophantine equation is one in which
exponents can be unknowns.

As the example, we take a linear Diophantine equation: 1027 · x + 712 · y = 1.
The example of usage of Genetic Algorithms and DEAP is shown on the listing

below, and code is aimed to show how a task can be solved with Genetic Algorithms.
Sure thing, that the problem has the analytical solution.
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4.3. Swarm intelligence

Many techniques relating to soft computing are based on the idea of representing
a set of rather simple objects combined by quite clear rules. Specifically, these tech-
niques show the behavior going beyond the activity of a separate individual on average
intellectual level. Here it is possible to apply either neural networks or evolutionary
algorithms. This paper will not examine neural networks in detail as it is necessary to
bring up this topic in completely separate course. Fortunately, the theory of neural
networks is worked and described rather well for the reader of any level therefore
there is a desire to simply find such manual which can allow to penetrate this subject
more deeply. We got acquainted with evolutionary algorithms in the previous section.
But probably the most brightly and obviously the idea related to summing of individual
intelligence, is implemented in such a direction of research as Swarm Intelligence.

With the development of computer architecture for the nearest future, a number
of dominant trends were determined: the number of cores in the processors will grow,
and individual computers will be combined into various kinds of network infrastruc-
tures, clusters and grids. In other words, there is something like a transition from uni-
cellular organisms to multicellular organisms or from a single existence to a communal
one that occurred in nature more than 500 million years ago. With the coming commu-
nality in IT, new challenges also arise: one has to learn how to manage a variety of
distributed infrastructures, find ways to integrate millions of cores and distribute the
load between them, and so on.

Now in the IT field, the engineering approach to the decision of such problems
prevails, but there are also many others – in particular, the once built on the principles
of bionics by combining engineering and biological principles. In bionic algorithms,
prompted by nature (Nature Inspired Algorithms, NIA), the behavior of colonies of
insects, birds or fish is reproduced on the machine level. NIA is not new – they have
found application in various kinds of optimization applications, and recently they
have extended it to management (see for example Bonabeau et al. 1999, Dorigo 1992,
Gambardella and Dorigo 2000, Goss et al. 1989, Kennedy 2010, Negnevitsky 2005,
Smaldon and Freitas 2006). And if you take into account that natural processes have
natural parallelism, NIA performance can be significantly accelerated by using large
pools of graphics processors and technologies like MapReduce.

The most NIA solutions imitate the properties of communities consisting of prim-
itive individuals – more precisely, their amazing ability to make decentralized deci-
sions. Communities of simple organisms provide a vivid example of the synergistic
effect, when the aggregate capacity of a community is greater than the sum of the capa-
bilities of individual parts – from which collective components, collective intelligence
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or swarm intelligence (SI) are formed. Thanks to SI, the swarm demonstrates the
behavior and acceptance of such solutions, which, because of their complexity, are cer-
tainly unavailable to a single individual. Who did not observe the behavior of ants or
unusual pirouettes of avian packs?

More recently, in the early 1990s, Deborah Gordon (Gordon 1999), a researcher
at Stanford University, uncovered the underlying secrets of coherent behavior. She
studied the mechanism SI on the example of the activity of termite ants, each of which
does not possess any intelligence, but their colony as a whole acts very reasonably.
It turned out that SI is a product of some structural complexity and is formed due to
a system of simple communications between members of the community. Exchange by
several bytes was enough to organize an expedient decentralized collective behavior.
The numerous studies that followed at the end of the last century showed that
the collective behavior of bee colonies, avian schools and even human communities
is based on the same principles. The latter was well written by James Surowiecki
(Surowiecki 2005) in the book “The Wisdom of the Crowd”, which explains the phe-
nomenon of crowdsourcing.

The discovery of Gordon was the impetus for a large number of research and de-
velopment, breathed life into an almost forgotten bionics. The first was the well-known
problem of the traveling salesman, followed by many others, described in detail, but
when considering SI from a variety of facts, we confine ourselves here only to the fact
that it involves the design of intelligent multi-agent systems based on principles
borrowed from the collective behavior of insect communities. How can the model of
coordinated behavior of the colony, based on simple interactions between an individual
member and the colony as a whole, be used for applied purposes?

The first practical applications of SI for optimization applications date back to the
mid-nineties of the last century, and in the second decade of the present century,
opportunities were opened for the extension of SI methods to infrastructures such as
clusters or grids. The huge potential of NIA here is obvious – there is a direct analogy
between the set of somehow united processors and colonies of animals. Another area
of possible application of SI in IT is the Big Data problem, where NIA-based technolo-
gies can support distributed computing models of MapReduce. The limitations of ex-
isting implementations of MapReduce in that they use a specific number of cores,
hence the inevitability of the batch mode and the structuring of the output data. But if
the idea of MapReduce implemented a swarm consisting of several types of nodes that
can cope with any input data combined with the ability to self-organize, then such
a swarm could quite work in real time, and without any preliminary data organization.
Intelligence opens up new possibilities in data analysis fundamentally, but this ap-
proach does not apply to transactional systems, where ACID requirements are critical
(Atomicity, Consistency, Isolation, Durability).
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Why does this direction involve researchers so much? Probably, because in
the surrounding world, all of us see examples of such “intelligence”:

– Animals (the person as the highest manifestation) – it is already clear that the
system rather simple is responsible for all very difficult behavior (but still not until
the end of studied) elements, neurons.

– Groups of scientists are most often able to solve more difficult problems in the
intellectual relation, than the singles. Though, very often there is not parallel con-
solidation, but consecutive – schools of sciences, the teacher pupils.

– Production of computers (and any difficult modern technique) – we will risk to
claim that any of recent people does not know a cycle of production of the com-
puter in all details. We can say the same about oil production for production of
plastic or metal for production of wires, finishing with questions about design
of advertising booklets for shops. Nevertheless, many people successfully make
and sell all this equipment.

– Ants and bees – a swarm of bees or ant colony for the dependent onlooker make
an impression of something much more intellectual than separate individuals. For
example we can observe the process of searching for food and the optimization of
finding the way on which ants bring found food in their ant hill.

The last example is modeled in “Ant algorithms” from which we want to start
studying the direction of Swarm Intelligence.

The original algorithm (Ant Colony Optimization) arose while observing how
Argentine Ant live inspect the territory around an ant hill, find food and bring it to an
ant hill, constantly optimizing (reducing) the path each of ants goes through. These
researches were examined in 1989 by Goss and et al. (Goss and et al. 1989) and in 1993
by Denebourg et al. (Denebourg et al. 1993). The first mathematical formalization of
an algorithm was offered in 1992 by Marko Dorigo (Dorigo 1992, Dorigo and Stützle
2004) and Gordon (Gordon 1999).

Ants while searching for food go around an ant hill in a random way through
tracks which were not previously bitten (“trodden”) by generations of insects. The
point is that the main orientation is based on giving off pheromones to which they are
very sensitive and with which they mark everything around. Moreover, each ant hill has
the individual train pheromone. Thus, the ant which has the same appearance but
comes from separate ant hill, will be apprehended as the enemy. Among ants we can
also distinguish blind ants which are guided by trail pheromones as well as touch.

Having found food, the ant intelligence agent comes back home, using one of
tracks. At the same time all its way is marked with a special pheromone. Upon return to
an ant hill, this ant “calls” (we will call this action so that not to complicate the descrip-
tion) other working ants and the process of transferring food in an ant hill begins.
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Working ants are guided by the smell left by an ant intelligence agent. At the same
time, they strengthen a smell, leaving the marks on a path if they find food. Thus,
footpaths become more and more noticeable. But they not always go the same way –
sometimes ants go astray and then in a random path look for the place marked
with a pheromone. Sometimes it leads to finding a shorter way. Also, at this time
there is an evaporation process of pheromones. If it didn’t occur, then the initial way
would always have the strongest smell and process of searching for a shorter way would
not happen.

Let’s provide this process graphically on Figure 4.9.

Fig. 4.9. An optimization process of transport path of the found food (A) to an ant hill (B):
a) ant finds food and comes back home any way; b) working ants convey food to home
following and laying pheromones; c) the most part of ants moves on the shortest way

In Figure 4.9:

a) an ant as the intelligence agent finds food then comes back home any way;
b) working ants convey food to an ant hill following and laying pheromones trails; on

shorter way ants manage to pass in bigger quantities therefore gradually this way is
becoming more and more intense in terms of pheromones;

c) the most part of ants moves on the shortest way and only separate individuals use
other ways.

a) b) c)
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Let’s describe the elementary ant algorithm more precisely. The labyrinth is set by
the count (tops and edges). We consider the ants looking for an optimum way (short-
est) between two tops (an ant hill and food).
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Let’s consider each of cycle steps in more detail.

1. Starting points where ants are located, depend on restrictions of a task. In the
elementary cases, we can place all of them in one point, or distribute accidentally
on the area of a labyrinth. At the same stage each edge of a labyrinth is marked
with the small positive number characterizing a pheromone trail. It is necessary in
order that on the following step we had no zero probabilities (see in Denebourg
et. al. 1993).

2. We determine the transition probability from i top in j top by the following formula:
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Where τi, j(t) – level of a pheromone trail, di, j – heuristic distance, α, β – constants.

If α = 0, then the choice of the closest neighbor is the most probable, and the
algorithm becomes “greedy”.

In a case β = 0, the choice only on the basis of pheromone level is the most prob-
able so it leads to jamming on already “trodden” ways.

As a rule, some compromise value is used for these sizes chosen experimentally
for each task.

Updating of level of a pheromone is made as follows:
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Here ρ – the parameter setting intensity of evaporation Lk(t) – the price of the
current decision for k-th of an ant, and Q stands for a price order for the optimal
solution. Thus, expression ( )kQ L t  defines quantity of a pheromone with which the
k-th ant marked an edge (i, j).
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4.3.1. The use of ant algorithm for the Traveling Salesman Problem

To check capability of ant algorithms to solve serious problems, we often use the
known task of the traveling salesman problem – there is a set of the cities which
the salesman should visit in such a way he arrives at each of them once and has
to return to the city where he set off. A task is an optimization of a way so the passable
distance can be the smallest one. It is one of the simplest problem definitions and we
will try to solve it.

It is inconvenient to show the tasks connected with columns in the console there-
fore for this task we will choose graphical representation using Matplotlib, library
for Python plotting. The reader can independently change and run an example, hav-
ing taken the sources from appendix to this course. So, let’s consider the realization of
it in details.

First of all, we need to make some preparations. Let’s see to the listing:
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The first thing you need to do is import the necessary libraries, such as NumPy for
fast computations, Matplotlib for graphical representation, and TQDM for showing
beautiful progress, when our ants are walking. Keep in mind, that TQDM isn’t included
in the standard packages in Anaconda, and you must install it, for example by using the
command line, conda install –c conda-forge tqdm.

First of all, we have two classes – City and Ant – the wrappers which are not bear-
ing any special functionality.
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The class City stores coordinates referring to “cities”, and the class Ant is used as
an imitation of a real ant. The ant only can move, reset his state, and, of course, tell us,
whether he can move or not.
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Taking a step further we can find initialization code in function init, that is gener-
ating some random cities and standard pheromone value, assigned to each city. So, in
final, now we have starting filed, where the ants will look for the best way.
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Furthermore, tables of distance between the cities and the table of pheromone
trails are initialized. We initialize the table of pheromone trails by values, other than
zero, so that the initial probability of the choice of given path can be positive.

The basic implementation of the traveling salesman algorithm is presented in
the following listing. You can freely use this code in your projects, modify it at your
discretion.
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Figure 4.10 shows the code of the main program written in the Jupiter notebook.
The red frame highlights the code of the main loop, where the main calculations take
place. During the calculations, a progress bar will be displayed.

Fig. 4.10. Screenshot for solving a task of the traveler salesman problem
in Jupiter Notebook

Finally, we get the final result in a graphical representation, as shown in the fig-
ure, we get the final result in a graphical representation, as shown in the Figure 4.11.

So, we considered a code which implements an algorithm of an ant algorithm.
Let’s see how it looks graphically. We start the application. We establish the number
of the cities equal 100, and parameter beta equal 2. Further screenshots: of the begin-
ning, the middle and the established process of the algorithm work are shown on Fig-
ure 4.12. As at each application run we start from the random city, readers will have
pictures, different from provided in the book.
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Fig. 4.11. Screenshot for solving a task of the traveler salesman problem

Fig. 4.12. Screenshots for solving a task of the traveler salesman problem:
a) the beging process; b) the middle process; c) the obtained result

It is visible that in the established decision there are still loops but not as repetitive
as at the beginning.

It is possible to move on to changing settings of an algorithm. For example, if at this
number of the cities we choose parameter beta equal 10, then the solution will be found
quicker. So the search will get quicker. Also, it is possible to try to remove small loops,
adding elite ants. It is possible to compare this results to the genetic algorithm. Try!
Observe artificial life which is always entertaining – you can slightly feel like God…

a) b) c)
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5. Clustering methods

With the increase of information contents, the intelligence systems and processes
are processed, stored and received as a result of work, during enterprises activity or
research activity. This processing and the analysis become difficult. Thus, there is the
need of initial information processing for its structuring, allocating of characteristic
signs, generalizing, and sorting.

For this purpose applying the processes of classification and the clustering (see in
Berry and Browne 2006, Han et al. 2011, Hastie et. al. 2009, Larose 2005, Roiger and
Geatz 2003, Zaki and Meira 2014, Aggarwal and Reddy 2013, Barbakh et al. 2009,
Diday and Simon 1976, Everit et al. 2001, Rokach 2009, Sneath and Sokal 1973,
Gordon 1999, Idris 2014, Pedregosa 2011, Sammut and Webb 2017) allows to carry out
preprocessing of information to its subsequent analysis (see more in Hand et al. 2011,
Amorim and Mirkin 2013, Barbakh et al. 2009, Fraley and Raftery 1998, Grabmeier
and Rudolph 2002, Hartigan 1975, Jain et al. 1999, Kaufmann and Rousseeuw 1990,
Milligan and Cooper 1988 Pestunov et al. 2011, Sneath and Sokal 1973).

In practice all discriminant and clustering analysis (Hand et. al. 2011, Hartigan
1975, Jain et al. 199, Jain 2010, Gordon 1999, Pedregosa et al. 2011) are based on the
compactness hypothesis. It can be formulated as follows: the objects belonging to one
class have to be located compactly at least in one of possible spaces of the object de-
scription.

Classification

A brief list of basic concepts.
Classification is a process of streamlining or distribution of objects (observations)

in classes for the purpose of reflecting relations between them. The class is the set of
the objects having the certain general sign distinguishing this set from other objects.
According to classification division it is possible to accept the different signs depending
on the classification purpose. The class always take the most important sign of the ob-
ject answering to the classification purpose as a principle.
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Classifying the object — means to specifying the class which this object belongs to.
The name of the class is a result of object classification i.e. defined by the classification
algorithm as a result of its application to this specific object.

Training of the qualifier — algorithm educating process, in case of the finite set of
objects, for which it is known, to what classes they belong to. This set is called ‘training
set’. Belonging to the class of other objects is not known.

Clustering

Clustering is a process of splitting the set selection of objects (observations) into
the subsets (as a rule, not crossed) called clusters so that each cluster consists of similar
objects, and objects of different clusters are differ significantly.

One of the purposes of the clustering is identification of internal communications
between given, by a way of definition, cluster structure. Splitting observations into
groups of similar objects allows to simplify further data processing and decision making,
applying the method of the analysis – “divide et impera” to each cluster (i.e. strategy
“divide and conquer”).

The one of more known applications of the clustering involves solving the prob-
lem of data compression. If an initial selection is too big, then it is possible to reduce it,
leaving some of the most characteristic representatives from each cluster.

The clustering is other sphere of using detection of novelty in the studied objects
set. Typical objects which do not manage to be attached to one of clusters are allocated.
For solving problems by methods of cluster analysis, it is necessary to fix the quantity of
clusters in advance. In one case, number of clusters can be reduced. In another case, it
is more important to provide high degree of objects similarity in each cluster, and num-
ber of clusters can be as big as necessary. In the third case, the separate objects,
which do not fit in any of clusters are the most important (see for instance in Jain 2010,
Grabmeier and Rudolph 2002, Mirkin 2005, Pestunov et al. 2011, Rokach 2009).

5.1. Clustering. General concepts

Let the set of objects { } 1
n

i ix =ℑ =  is presented by the set of attributes

{ }1 2, , ..., ,i i i
i mx t t t=  where itν  accepts values from the set .iTν  The problem of the cluster-

ing consists of creating the sets { } 1
kC cν ν==  and displaying :F Cℑ →  as the set of ob-

jects on the set of clusters.
The cluster contains objects from ℑ similar (by the set criterion) to each other

( ), , ,i j i jx c x c d x xν ν∈ ∈ ⇒ < ε

where d(°, ·) is a proximity measure between objects (distance), and ε – the maximum
value the threshold creating one cluster.
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The most used measures of proximity is the concept of distance between two
points .i jx x−  Let’s give some most commonly used definitions of distance.

– Euclidean (mean square or � 2) distance (see Fig. 5.1):

( )2

2
0

m
i j

i jx x t tν ν
ν=

− = −∑

Fig. 5.1. An illustration of Euclidean distance

– distance �1 (in English-speaking literature – ‘manhattan’ or city distance) (see Fig. 5.2):

1
0

m
i j

i jx x t tν ν
ν=

− = −∑

Fig. 5.2. An illustration of distance �1

it is used in the case when it is necessary to reduce influence of separate emissions;
– chebyshev (uniform or �∞) distance (see Fig. 5.3):

0,...,
max i j

i j
m

x x t tν ν∞ ν=
− = −

Fig. 5.3. An illustration of Chebyshev distance

it is used if it is necessary to increase the influence of separate emissions;

xi

xj

xi

xj

xi

xj
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– Mahalonobis distance

( ) ( )1 ,
T

i j i j i jM
x x x x x x−− = − Σ −

it is used when it is necessary to consider a correlation for a specific class. Σ is the
complete correlation matrix.

Let’s point out that in many cases instead of distance as criterion of proximity
the value of the cosine of the angle between two vectors is used

,
2 2

cos .
T
i j

i j
i j

x x

x x
φ =

A correlation factor is also often used

( )( )
( ) ( )

1
, 2 2

1 1

.

n
i i j j

i j
n n

i i j j

t t

t t

ν ν
ν=

ν ν
ν= ν=

− μ − μ
σ =

− μ − μ

∑
∑ ∑

It is very important for the problem relating to clustering that all data were com-
mensurable i.e. that it did not turn out that one part of data is measured in packing
units and the other in kilograms, in other words, at the first stage of the clustering it is
always necessary to carry out data normalization. Besides, when holding the procedure
based on clustering it is necessary to determine either number of clusters, or a criteri-
on, characterizing proximity of elements in the cluster or remoteness of clusters from
each other in advance.(see more in Fraley and Raftery 1998, Kaufman and Rosseeuw
1990, Milligan and Cooper 1985, Mirkin 2005, Nguyen and Doan 2012, Sneath and
Sokal 1973).

Clustering methods can be divided into two classes – hierarchical and nonhierar-
chical. In non-hierarchical algorithms we use the stop condition (in the sense of epsi-
lon in the iteration difference) and a fixed number of clusters. The basis of these algo-
rithms is the hypothesis of rather small number of the hidden factors which define
structure of communication between signs. Hierarchical algorithms are not tied on
quantity of clusters. Its characteristic is determined by dynamics of merge and division
of clusters during creation of the tree of the enclosed clusters (dendrogram). In turn,
hierarchical algorithms are divided into agglomerative methods, which are built by
combining elements, i.e. reducing the number of clusters, and divisive method, based
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on division of existing groups (clusters) (see, for example, Everit et al. 2001, Hartigan
1975, Lance and Williams 1967, 1968a, 1968b, Macnaughton-Smith et al. 1964 Mirkin
2005, Roux 2015, Diana algorithm).

5.2. Hierarchical methods

5.2.1. Hierarchical methods. Agglomerative algorithms

On the first step each element ℑ is a separate cluster { }0 .i ic x=  On each subse-
quent step two closest clusters icν and icμ  combine in one, so the set formed of n – 1
clusters contains { } { }( ){ }1 0 0 1 0

1 1, , ,ic c c c c iν μ= = ≠ ν μ  (see Fig. 5.4).
Further this process repeats. In the end we will receive one cluster matching with

all elements of ℑ.

Fig. 5.4. Input data

At the merging ν and μ clusters in i-th step it is necessary to calculate distance
from the new cluster to other clusters. Traditionally, for recalculation of distance dur-
ing merge of clusters old values of distances are used (see Hartigan 1975, Kaufman and
Rousseeuw 1990, Lance and Williams 1968a, 1968b, Mirkin 2005, Pedregosa et al.
2011). As a rule, at the same time use the following criteria (p. 1–4).

1) Minimum distance (see Fig. 5.5):

( ) { }min , min | , .i j i jc c x y x c y c= − ∈ ∈d

Fig. 5.5. Result of application of the agglomerative
clustering with the minimum distance
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This algorithm promotes growth of the extended clusters. To algorithm shortco-
mings, first of all, it is necessary to refer sensitivity to noise.

2) Maximum distance (see Fig. 5.6):

( )max , max{ | , }.i j i jd c c x y x c y c= − ∈ ∈

Fig. 5.6. Result of application of the agglomerative
clustering with the maximum distance

The algorithm on the basis of the maximum distance promotes formation of com-
pact clusters. The effect of destruction of the extended clusters belongs to short-
comings.

3) Average distance

( ) 1
, .

i j

i j
i j x c x c

d c c x y
n n ∈ ∈

= −∑ ∑�

4) Distance between centers clusters

( ), .i j i jd c cμ = μ − μ

The two algorithms mentioned above are based on average distance. From the
computing standpoint the stability and efficiency are appropriate in practice. The algo-
rithms based on distance between centers of clusters are more effective.

5.2.2. Hierarchical methods. Divisive algorithms

The ideology of divisive algorithms is dual to agglomerative ones. In the first step,
all elements belong to one set ℑ. In next steps, one of the existing clusters is divided
into two separate subsets.
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Fig. 5.7. An illustration of the divisive algorithm of the clustering

The simplest algorithm, among such algorithms, was described a long time ago by
Macnaughton-Smith et al. in 1964 (Macnaughton-Smith et al. 1964) and reused by
Kaufman and Rosseeuw 1990, Lance and Williams 1968b, Roux 2015. The point is that
in the beginning we choose an element from cluster 1

0 ,=� �  which is the furthest from
the center of the cluster, and this element creates the new cluster 1

2,c  whereas the re-
mained elements, create 1 1 1

1 0 2\ .c c c=  On each subsequent step the element from 1
1,c  for

which the difference between distance to the center from the cluster 1
2c  and the clus-

ter 1
1c  is the greatest, is attached to 1

2.c  This process is being continued until the differ-
ence becomes negative, i.e. until all elements are chosen form from 1

1.c  Splitting one
cluster into two will be the result. Further, this iterative process continues. The choice of
the split cluster can be carried out proceeding from different reasons, for example, the
cluster with the largest diameter is chosen i.e. 

,
max ,i j

i j
x x−  where elements xi, and xj lie

in one cluster. As a rule, divisive algorithms are used in case of small size selections. An
example is shown in Figure 5.7.

5.3. Examples in Python –
clustering hierarchical methods

Several examples are given below. The following examples were inspired by Pe-
dregosa et al. 2011.
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5.4. Nonhierarchical algorithms

Nonhierarchical algorithms have gained great popularity due to the fact that
a given problem of optimization is their cornerstone. In particular, the point is
that grouping the initial set of objects in clusters is the solution to some extremum



217

problem (see in Hand et al. 2001, Amorim, Mirkin 2012, Bock 1999, Diday, Simon
1976, Jain et al. 1999, Jain 2010, Kaufman, Rousseeuw 1990, Mirkin 2005, Rokach
2009, Pedregosa et al. 2011). Let’s consider some of the most popular methods.

One of the most popular numerical analyses is the least-squares method. For the
problem of the clustering it looks as follows

2

1 1
min,

jnk

i j
j i

x s
= =

− →∑∑

on all sj and k.

Numerical implementation of this task is called k-means method (see Hand et al.
2001, Jain et al. 1999, Jain 2010, Mirkin 2005, Rokach 2009, Sneath, Sokal 1973).

5.4.1. K-means method

The idea behind the method is the following: k of any initial centers gets out of the
set in the beginning ℑ. Furthermore, all objects break into k groups, the closest to the
relevant center. On the following step the centers of the found clusters are calculated.
The procedure repeats iterative until the centers of clusters are stabilized.

Algorithm of splitting objects xi (i = 0, 1, …, n) is based on minimization of inter-
cluster distance. If as such distance the mean square norm � 2 is used, the target function
is as follows

{ }2

1
| ,

k

i j i j
j

S x x c
=

= − μ ∈∑∑

where xi – i-th the object, and cj represents j-th cluster with the center μj.

The structure of the algorithm is as follows:

1. For initialization of the algorithm we randomly choose k centers of clusters.
2. we put each of n objects into the cluster, conducting the minimization �2-norm

between the object and the center of the corresponding cluster.
3. We calculate the centers of again received clusters.
4. For each i-th, if xi ∈ cj let’s calculate

2argmin ,
1

r i r

r

n x
h

n

− μ⎧ ⎫⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭

where nr number of objects of the cluster cr.
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For the solution of this task among all elements of the cluster x ∈ ci let’s find the
element z minimizing evasion 2

2ix c
x z

∈
−∑  for which we will find the solution of

the task:

( ) ( )2 2 2
2 2 22 0,

∈ ∈ ∈

∂ ∂− = − + = − + =
∂ ∂∑ ∑ ∑

i i i

T

x c x c x c

x z x x z z x z
z z

that is:

1
.

i
i x c

z x
n ∈

= ∑

5. If the condition below is satisfied:

2 2 ,
1 1

j i jh i h

h j

n xn x

n n

− μ− μ
<

− −

then the object xi should be moved from the cluster cj to the cluster ch and then
again the values of cluster centers should be counted.

6. If i < n, then we pass to the step 4, otherwise to the step 3.
As a criterion of the stop algorithm one can assume either achievement of the set

number of algorithm iterations, or reaching the fixed threshold value by objective function.
The method is effective if data are divided into compact groups which can be de-

scribed as the sphere. The use of indicator function allows to simplify the notation of
the basic algorithm and it can be written down in the following form.

Let { } 1
k

i iC c ==  be a set of clusters with the centers:

1

1

{ | }
,

{1| }

n i
j jj j i j

i n ij i jj

u xx x c

x c u

=

=

∈
μ = =

∈

∑∑
∑ ∑

where i
ju  is an indicator function, that is:

1, if ,

0, otherwise.

j ii
j

x c
u

∈⎧⎪= ⎨
⎪⎩
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The objective function

( ) ( )
1 1

, , ,
k n

i
j j i

i j
S C u d x

= =
ℑ = μ∑∑

and conditions

1 1
1, 0 ,

n k
i i
j j

i j
u u n

= =
= < ≤∑ ∑

that is, each element can be only in one cluster, and, the cluster cannot be empty. Not
to mention that cluster cannot contain more elements than their initial quantity.

The stop condition of algorithm execution after ν-th step can take the follow-
ing form

( ) ( )1, , ,S C S Cν ν−ℑ − ℑ < ε

where ε is the chosen threshold.

Let’s notice that at the calculation of accessory criterion, it is possible to consider
the cluster size that allows to improve efficiency of the algorithm. The criterion is that
j-th element belongs to i-th, but not k-th cluster and takes the following form

( ) ( ), , ,
1 1

i k
j i j k

i k

n n
d x d x

n n
μ < μ

− −

where ni is the number of elements in the correlated ci cluster. The speed of the meth-
od convergence is O(n).

The literature on the subject mentions the following disadvantages of his method:

– Existence of the priori information on quantity of clusters,
– Sensitivity to the isolated remote elements,
– Essential dependence of speed of the method convergence on the initial choice of

the cluster centers.

Let’s give the illustration (see Fig. 5.8) of the k-means method from http://
en.wikipedia.org/wiki/K-means_algorithm.
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Fig. 5.8. An illustration of the k-means method
Source: http://en.wikipedia.org/wiki/K-means_algorithm

5.4.2. Fuzzy k-means

This algorithm is generalization of the mentioned above method. We can use it if
clusters are indistinct sets, and, the element can belong to different clusters with differ-
ent degree of reliability (see Bezdeck 1981, Babuska et al. 2002).

Let w ∈ (1, ∞) (usually w = 2 undertakes) the weighting coefficient of the illegibility.
Let { } 1

k
i iC c ==  be a set of clusters with the centers

( )

( )
1

1

,
n

=

=

=
∑

∑

n wi
j j

j
i

wi
j

j

u x

s

u

where:

, if

0, otherwise,

μ ∈⎧⎪= ⎨
⎪⎩

j ii
j

x c
u

where μ is the membership function.

The objective function

( ) ( ) ( )
1 1

, , .
k n wi

j j i
i j

S C u d x
= =

ℑ = μ∑∑

1) Input data (in
this case K = 3).
The starting centers
of clusters are cho-
sen randomly and
shown in red, blue
and green color.

2) The clusters are created
by merging each center with
the nearest mean.

3) The barycentre of each
of K clusters becomes the
new center.

4) Steps 2 and 3 are repeat-
ed  so far the process of the
clustering will not be com-
plete.
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And conditions

1 1
1, 0 ,

n k
i i
j j

i j

u u n
= =

= < ≤∑ ∑

that is, each element can be only in one cluster, and, the cluster cannot be empty.
Moreover the cluster cannot contain more elements than their initial quantity.

The stop condition of the algorithm execution after ν-th step can take the form

( ) ( )1, , ,S C S Cν ν−ℑ − ℑ < ε

where ε is the chosen threshold. The speed of the method convergence is O(n).

5.4.3. Gyustafsona–Kessel’s clustering

In fact, it is the same algorithm as mentioned above, but we apply correlation de-
pendences in the clusters. This is the reason that clusters instead of spherical shape
become ellipsoids. That allows to carry out splitting with higher quality if elements ℑ
are extended along any directions. In other words, if there is a set shape defining the
cluster, then it is better to consider elements’ belonging to the cluster according to
these shapes.

Well, it is the same k-means method, but Mahalanobis’s distance is used.

FOREL (Formal Element)

This algorithm is one of modifications of k-means algorithm. Difference consists
that the proximity of elements in the cluster is understood as covering the sphere with
a fixed radius.

The scheme representing how the algorithm works is shown as follows: the center
of the cluster (at the first stage this is any element) is selected, and, all elements whose
distance from the center is not greater than the determined R are assigned to the
group. Then the center as the center of gravity (relative to distance) of the received
new cluster is recalculated. Group elements are re-verified as described above. And so
on until the center of gravity is stabilized (it stops changing).

It is worth noting that the k-means method, as well as its modifications, is guided
a priori by information about number of classes. It can be bypassed. We apply the
method k-means or its modification consistently to each k clusters and we calculate
the maximum mistake. As soon as the value of mistake is stabilized, the number of
clusters elements is settled then the algorithm stops. The method is long.
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Let’s have the illustration representing the use of the k-means method for the
clustering of images. So, let’s look at the test of image “Orange” (see Fig. 5.9).

Fig. 5.9. The imagine “Orange”

Let’s consider the k-means method for the array (i, j, ri, j, gi, j, bi,j). We choose quan-
tity of clusters equal to five.

After the first step we receive the following clusters (see Fig. 5.10).

Fig. 5.10. The received, after first step, clusters from the imagine “Orange”

After the sixth step clusters are distributed as it is shown in Figure 5.11.
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Fig. 5.11. The received, after sixth step, clusters from the imagine “Orange”

The picture does not change significantly even after hundred steps (see Fig. 5.12).

Fig. 5.12. The received, after hundred steps, clusters from the imagine “Orange”

5.4.4. Method of correlation galaxies

Undoubtedly, the idea of creating clusters, involving maximizing correlation
communication is the cornerstone of this method, i.e. the sum of correlation factors
modules between parameters of one group which is rather big, and communication
between parameters from different groups which are small. On the complete objects
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correlation matrix the graph which then breaks into subgraphs is constructed. More-
over, elements corresponding to each of subgraphs also form the cluster.

Let’s consider the complete correlation matrix { }, , , 1, 2, ..., .i jC c i j n= =  We will
order the initial objects in a way based on the principle of the maximum correlation.
Thus in total n of objects joint by n – 1 of lines (edges) the sum of modules of correla-
tion factors is maximum. Let’s describe creation of the graph. At the beginning we
can consider the tops of the graph corresponding to objects xl and xm. We will deliver
these tops in compliance weight c(1) = |cl,m| to the edge connecting. Then, having
excluded cl,m, we find the greatest coefficient in the m-th matrix column (it corre-
sponds with finding of the element, which is later the most related xl “is connected”
with xm). And the greatest coefficient in the l-th matrix row (it corresponds with find-
ing of the element, which is later the most related xm “is connected” with xl). The great-
er of two indecated factors is chosen. Let it be c(2) = |cl,m|. The vertex xj we connect
with xl, and, to the corresponding edge we put down value c(2). Then we find objects,
the most connected with xl, xm and xj, and we choose the greatest of the found correla-
tion factors. Let it be c(3) = |cj,q|. Let’s have a new element, appearing at every stage as
already used, be excluded. Therefore, q ≠ l, q ≠ m, q ≠ j. Furthermore, the top of the
graph corresponding xq, is connected with xj, etc. At each step the elements, which are
most strongly connected with two last considered elements, are defined. Then one of
them corresponding to a larger correlation factor is removed. The procedure comes to
an end after n – 1 steps. The graph consists of the vertexes connected by n – 1 – m
edges. Next we set threshold value ε. Thus all edges corresponding to the less than the
fixed ε, as a correlation factors, are excluded from the graph. The received subgraphs
create clusters.

5.4.5. Spectral clustering method

The classification task is to determine disjoint subsets in such a way that the simi-
larity of objects within subsets is as high as possible, but between subsets as low as
possible. The basis of such research is the assumption that data obtained from one
source should behave similarly. Sometimes similarity is very hard defining. The meth-
od spectral clustering is dedicated for extracting non-convex boundaries groups.

Let us assume that objects xi (i = 0, 1, …, n) are from m-dimensional space
and form not compact but connectivity clusters. Samples input data are presented
in Figure 5.13. Spectral clustering makes use of the spectrum (eigenvalues) relating to
the Laplace (similarity) matrix to reduce primary n-dimensional data into a data set of
dimension equal to the number of classes k.

A discussed method (see for example Chan et al. 1994, Dhillon et al. 2004, Jenssen
et al. 2004, Kannan et al. 2000, von Luxburg et al. 2008, von Luxburg 2007, Ng, Jordan,
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Weiss 2002, Weiss 1999, Zelnik-Manor, Perona 2004) enables us to detect untypical
(as it was mention above not compact and non-convex boundaries, but connectivity)
subsets of data. The idea of these algorithms is to cluster points using eigenvectors of
matrices derived from the data. The following stages can be distinguished.

Fig. 5.13. Samples input data for spectral clustering

First step: Let X be a matrix of data which describes the set of n elements with m
attributes. Based on this matrix, the distance matrix D = [dij] is computed.

Second step: This stage is based on the distance matrix. A similarity (affinity) ma-
trix A is computed by applying a kernel estimator. In the subject literature, the following
kernel estimators can be found: linear, polynomial, hyperbolic, chain, Gaussian (eq. (5.1))
and Laplace (eq. (5.2)). More kernel estimators are given in Hofmann et al. 2008,
Langone et al. 2016, Scholkopf et al. 1998, Vapnik 2000, 1998. Furthermore, the type
of kernel function to utilize is application-dependent. Table 5.1 outline some of them.
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Table 5.1

Types of kernel function for differential application

Source: (Langone, Mall, Alzate, Suykens 2016)

The two most important are:

2

2
exp ij

ij
d

A
⎛ ⎞
⎜ ⎟= −
⎜ ⎟σ⎝ ⎠

(5.1)

( )expij ijA d= −σ⋅ (5.2)

where σ is a scale parameter called the kernel width. It has a fundamental meaning for
spectral classification. In the literature a lot of different methods of determining this
parameter can be found (see Zelnik-Manor, Perona 2005).

Third step: The stage consists of the constructing a normalized Laplace matrix
1 /2 1/2,L W A W−= ⋅ ⋅  where W is a diagonal matrix of weights with the diagonal ele-

ments being equal to the sum of the row elements of the matrix A.
Fourth step: Eigenvalues and eigenvectors of the matrix L are computed. The first

k eigenvectors (corresponding to ordered eigenvalues and chosen to be orthogonal to
each other in a case of repeated eigenvalues) are used to build the n × k-matrix E.

Fifth step: In the last stage, the matrix E is normalized so that the length of each

row is one ( )1 /22. . .ij ij j iji e E E E⎛ ⎞′ = Σ⎜ ⎟⎝ ⎠

Application Kernel name Mathematical expression 

Vector data Radial Basis Function 
2

2
exp

⎛ ⎞
⎜ ⎟−
⎜ ⎟σ⎝ ⎠

ijd
 

Images Radial Basis Function χ2 
2

2
exp

⎛ ⎞χ
⎜ ⎟−
⎜ ⎟σ⎝ ⎠

ij  

Text cosine 

T
i j

i j

x x

x x
 

Time series 
Radial Basis Function 
/correlation distance 

2

2
exp

⎛ ⎞
⎜ ⎟−
⎜ ⎟σ⎝ ⎠

ijd
  where dij is a correlation distance 
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Sixth step: Thus obtained matrix E' is a starting point for classical clustering meth-
od (e.g., k-mean method).

The most important problem is to depict number of clusters. There are several
criterion discussed in for instance Chan et al. 1994, Jensen et al. 2004, Kannan et al.
2000, Zelnik-Manor, Perona 2004. The reader can delve into the subject oneself.

Let us show the two examples. The data used in the first case are shown in Fig-
ure 5.14. They form three circles with a common circle center. It is obvious that in this
case we can distinguish three subsets.

Fig. 5.14. The first data set used for spectral clustering – noisy circles

Such cluster can be easy identified by proposed transforming data. In such case
the Laplacian L from the third step is approximately block-diagonal, with each block
defining a cluster. It can be represented as it is shown in Figure 5.15. The result of data
clustering is illustrated in Figure 5.16.

Fig. 5.15. The Laplacian matrix for the data shown in Figure 5.14
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Fig. 5.16. Depicted clusters from prepared data

In the second example the data are called spirals (see in Fig. 5.17). There are two
good separated clusters. More examples the reader can find in code programmers on
the web page.

Fig. 5.17. The ‘spirals’ data set: a) source data set; b) depicted clusters

5.5. Examples in Python –
clustering nonhierarchical methods
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6. Classifiers

The huge amount of information possessed by mankind resulted in creating the
concept of automation of knowledge extraction – Data Mining. This direction is con-
nected with the broad spectrum of tasks starting with recognition of indistinct images
before creation of search engines (see in Hastie et al. 2009, Larose 2005, Ponclet et al.
2008, Roiger, Geatz 2008, Theodordis, Koutroumbas 2006). The important com-
ponent of Data Mining is processing of text information (see for instance Charu
2015). Such tasks lean on the concept of classification and clustering (see for example
Domingos, Pazzani 1997, Ghazanfar, Prügel-Benet 2010, Gordon 1999, Koren et al.
2009, Naive Bayes…, Pazzani 1996, Reiten 2017, Rocchio 1966, 1971, Sebastiani 2002).
Classification refers to the definition of belonging of some elements to one of the pre-
viously created classes. The clustering means splitting the set of elements into clusters
which quantity is defined by localization of the set elements in the neighborhood
of some natural centers of these clusters. Implementing the classification problem ini-
tially has to lean on the set postulates, basic of which are the priori information on
primary set of objects and the measure of proximity of elements and classes.

6.1. Definition of the classification problem

Let’s use the following model of the classification problem, where
Ω – a set of subjects to recognize (like space of images).
ω ∈ Ω a subject to recognize (for instance: image).
g(ω): Ω → ℜ, ℜ = {1, 2, …, n} – the indicator function breaking space of images Ω

into n not crossed classes Ω1, Ω2, ..., Ωn. Indicator function is unknown to the observer.
X – space of the observations perceived by the observer (space of signs).
x(ω): Ω → X – the function putting ω at the end in compliance to each object x(ω)

in space of signs. The vector x(ω) is the image of the object perceived by the observer.
In space of signs referring to non-overlapping sets of points [i] Ξ ⊂ X i = 1, 2, …, n

are defined groups corresponding to images of one class.
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ϕ(x): X → ℜ – the decisive rule – assessment for g (ω) on the basis x(ω), i.e. ϕ(x) =
= ϕ(x(ω)).

Let xv = x(ωv), v = 1, 2, ..., N information available to the observer on func-
tions g(ω) and x(ω), but these functions are unknown to the observer. Then (gv, xv),
v = 1, 2, ..., N – the set of precedents.

The task involves creating such decisive rule ϕ(x) whose recognition can be car-
ried out with the minimum number of mistakes.

6.2. Main directions of the research of
the classification issue

Everyday occurrence is a considering the Euclidean space of signs and quality of
the decisive rule to measure, by the frequency of the emergence of the correct deci-
sions. As a rule, the assignment of a set of Ω objects to the appropriate class is evaluat-
ed with some probability measure. Bayesian approach (see, for example, Domingos,
Pazzani 1997, Ghazanfar, Prügel-Benet 2010, John, Langley 1995, Kohavi et al. 1997,
Kohavi 1996, Langley et al. 1992, Zhang 2004, Zheng, Webb 2005, Zheng, Webb 2005)
proceeds from the statistical nature of observations. The assumption of probability ex-
istence measure on space of images which either if is known is taken by the basis, or if
is not known can be estimated. The purpose consists of development of such qualifier
which can correctly define the most probable class for the trial image. Then the task
consists of definition of “the most probable” class. Bayesian approach is based on the
assumption of existence of some probability distribution for each parameter. The dis-
advantage of this method is the need to postulate the existence a priori distribution for
an unknown parameter, and its quantitative characteristics.

The use of search of compliance is preceded by creation of the statistician set
which contains the number of texts in this class and the list of the used terms together
with the counters.

Defining the suitable class of texts for the set text, its structure is under construc-
tion of not repeating terms and their cardinalities – (wi, n(wi)).

Let M denote the size of the number of classes. Let’s name the text classes,
to which we put phrases, by cj ( j = 0, ..., M – 1). For each word wi from the checked
text, we find this word and the corresponding counter in each statistics n(wi, cj) (here
j = 0, 1, ..., M – 1 is the number of the class). Through n(cj) let’s name the number of
texts in j-th class. Minimization of risk and probability of the mistake are equivalent
to division of the space of signs into n areas. If areas adjacent, then they are divided by
the decision surface in multidimensional space. For the case of creating the dividing
surface it is more preferable to use discriminatory analyses exactly from Bayesian
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hypothesis. The use of probabilistic characteristics is defined on normal distribu-
tion which is very widely used because of computing convenience and adequacy in
many cases.

If this is known or with a sufficient basis, it can be assumed that the density func-
tion determined for the likelihood function P(x|Ωi) is Gaussian, then the use of Bayes
classifier leads to the fact that the data characterized by normal distribution show
a tendency to group around the average value, and their dispersion is proportional to
the mean square deviation ó. Probabilistic methods are guided by information on the
elementary probability law for each class. Unfortunately, in real tasks information on
density function is absent.

To solve the problem of automatic classification of subjects to space shooting,
J. Rocchio (Rocchio 1966, 1971) offered the algorithm TF-IDF (term frequency/inverse
document frequency). Let’s explain this concept in a few words. TF-IDF is the statisti-
cal measure used for assessing the importance of the word in the context of the docu-
ment which is the part relating to the collection of documents or cases. The weight
of some word is proportional to the number of uses of this word in the document and
is inversely proportional to the frequency of use of the word in other documents of
the collection.

The measure of TF-IDF is often used in tasks of the analysis of texts and the infor-
mation retrieval, for example, as one of criteria of relevance of the document to the
search query, when calculating the measure of proximity of documents at the clustering.

TF (term frequency – word frequency) is a ratio of the number of occurrences of
a word to the total of words in the document. Thus, importance of the word ti in the
separate document is calcuated as follows

TF ,i

k
k

n

n
=

∑

where ni is the number of the word occurrences in the document, and in the denomina-
tor – total number of words in this document.

IDF (inverse document frequency – the return frequency of the document) – inver-
sion of frequency with which a word occurs in documents of the collection. The ac-
counting of IDF reduces the weight of widespread words

( )
IDF log ,

i i

D

d t
=

⊃

where |D| is the number of documents in the case; |(di ⊃ ti)| – the number of docu-
ments in which ti occurs (when ni ≠ 0).
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Thus, the measure of TF-IDF is the work of two factors: TF*IDF. Big weight in
TF-IDF will be received by words with high frequency within the specific document
and with the low frequency of the uses in other documents.

The first work which laid the foundation for a whole series of the works in
this area was the work of Vapnik and Chervonenkis (Vapnik and Chervonenkis 1964,
Vapnik and Chervonenkis 1974). The methods of pattern recognition offered by
authors and the statistical theory of training, which was their cornerstone were very
successful (see more in Vapnik 2000, Sebastiani 2002, Pedregosa et al. 2011, Richert,
Coelho 2013, Sammut, Webb 2017). Algorithms of classification and regression under
the general name SVM replaced neural networks successfully in many cases and at
present are applied very widely.

The idea of the method is based on the assumption that the best way to divide
points in n-dimensional space is n – 1 the plane (set by the f(h) function), that is equi-
distant from the points belonging to different classes. The method of basic vectors
(Support Vector Machine – SVM) applies to the group of boundary methods. This
group of methods defines classes by means of borders of areas. Sets of objects lying on
the boundaries of areas are called support vectors. Classification is considered as good
if the area between borders is empty. However, the complexity of SVM model creation
is that: the higher space dimension is, the more difficult the work with it is. Thus it
limits SVM use significantly (see more in section 8).

6.3. Stochastic classifiers

6.3.1. Use of the theorem of Bayes for decision-making

Let’s consider one of the most popular discriminatory analyses based on the sto-
chastic principles. The basis of this method is the priori information on probability
distribution of the existing classes Ci.

The prior (initial) probability is interpreted as the description of information in
lack of the certificate of the event. The posterior (subsequent) probability takes this
certificate into accont. The prior probability of emergence of the event of y at observa-
tion x is calculated as follows

( )
( )

( | )
( | )

P x y P y
P y x

P x
= (6.1)

where P(x) is the prior probability of observation x, and, respectively P(y) the prior
probability of emergence of the event of y.
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Let’s consider the following task: making a decision about gender, i.e. who is a man
and who is a woman based on the person’s height (see Tab. 6.1).

Table 6.1

Data for the decision on the sex i.e. who is a man or who is a woman

The ethnic origin to certain groups of the people can influence human height. So,
for example, the average height of Chinese – 164.8 cm (for men) and 154.5 cm (for
women), and the average height of Netherlanders – 184.8 cm and 168.7 cm, respective-
ly. We assumed that the average height of the men on the Earth is 164 cm, and women
– 154 cm.

Let’s consider that growth of people has normal distribution N(μ, σ2).

( ) ( )2

2
1

exp ,
2 2

l
p l

⎛ ⎞− μ⎜ ⎟= −
⎜ ⎟σ π σ⎝ ⎠

in particular, growth of men has distribution (Fig. 6.1) and for women (Fig. 6.2).

( )2

2
1641

( | ) exp ,
20 2 2(20)

l
p l m

⎛ ⎞−⎜ ⎟= −
⎜ ⎟π ⎝ ⎠

( )2

2
1541

( | ) exp .
22 2 2(22)

l
p l w

⎛ ⎞−⎜ ⎟= −
⎜ ⎟π ⎝ ⎠

Body length Man Woman 

Dwarfish it is lower than 129.9 cm it is lower than 121.9 cm 

Very small 130–149.9 cm 121–139.9 cm 

Small 150–159.9 140–148.9 cm 

Below average 160–163.9 cm 149–152.9 cm 

Average 164–166.9 cm 153–155.9 cm 

Above average 167–169.9 cm 156–158.9 cm 

Big 170–179.9 cm 159–167.9 cm 

Very big 180–199.9 cm 168–186.9 

Huge from 200 cm and above from 187 cm and above 
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Fig. 6.1. The distribution of men height

Fig. 6.2. The distribution of women height

It is necessary to evaluate parameters of these distributions in terms of their
use in Bayes’s theorem decide whether height corresponds to the man or the woman
(see Fig. 6.3).

Fig. 6.3. The distributions of human height
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Let’s create a classifier with a maximum probability. It is based on the fact that
priority is given to an event for which there is a high probability for a given observation,
that is, if an inequality is met for a certain height h

( | ) ( | ),>p l m p l w

that is

( ) ( )2 2

2 2
164 1541 1

exp exp ,
20 2 22 22(20) 2(22)

l l⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− > −
⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

so we make the decision that we observe the man, otherwise

( ) ( )2 2

2 2
164 1541 1

exp exp ,
20 2 22 22(20) 2(22)

l l⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− < −
⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

we consider that we observe the woman. In this case the equilibrium point in which we
cannot define the sex of the person corresponds to the height of 155.2 cm. If the height
is less than 155.2 cm, then the qualifier of maximum likelihood considers that this per-
son is a woman if it is more – the male (see Fig. 6.4).

Fig. 6.4. The distribution of human height with equilibrium point

The prior probability of the observed height of the man and woman differs. Let’s

assume that likelihood that a randomly selected person will be a man is ( )man 2 5,P =
and for a woman is ( )woman 3 5.P =
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According to Bayes rule

( )
( )

( )
( )

( | ) ( | )
( | ) and ( | ) .

p l m P w p l w P w
P m l P w l

p l p l
= =

In this case, the qualifier may take the following form if the assumed inequality is
met

( )
( )

( )
( )

( | ) . ( | )
,

p l m P m p l w P w

p l p l
>

or that the same condition

( ) ( )( | ) ( | ) ,p l m P m p l w P w>

then the person being verified is the man, in the opposite case is the women.
Thus, solving inequality takes the form as follows

( ) ( )2 2

2 2
164 1542 1 3 1

exp exp ,
5 520 2 22 22(20) 2(22)

l l⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⋅ − > ⋅ −
⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

and we receive that if l > 173.4, we make the decision that the person is a man, if
l < 173.4, the person is a woman.

6.4. Naive Bayesian classifier

The Bayesian classifier is based on that the prior probabilities of hypothesis P(ci)
are known, that is, probability of belonging to a class ci (i = 1, 2, …, k). The Bayesian
classifier does not answer the question how to find them (see for instance in Domin-
gos, Pazzani 1997, John, Langley 1995, Kohavi et al. 1997, Langley et. al. 1992, Zheng,
Webb 2005, 2008). The naive Bayesian classifier allows to estimate these probabilities,
but incorrectly. Sometimes it is even very wrong, but, nevertheless, it is better, than
nothing. The most often used area of the naive Bayesian classifier belongs to the prob-
lem of text classification where this method allows to receive quite good results (see in
Naive Bayes …, Reiten 2017, Sebastiani 2002). The naive Bayesian classifier assumes
conditional independence of attributes, in particular, when processing texts, assump-
tions of the naive qualifier are absolutely discouraging – the probability of emergence
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of the word does not depend on other words in the document and, moreover, does
not depend on the document size. Surprisingly, the naive Bayesian classifier was quite
effective for processing of texts and was widely adopted, in particular, for filtering
of spam(for example Ghazanfar and Prügel-Bennet 2010, Naive Bayes…, Rocchio
1996, 1971).

Let’s pass to the statement and discussion on the naive Bayesian classifier.
It is supposed that the algorithm of classification works on a set of documents

D = {bi}. Each set of documents breaks into disjoint subsets.

{ } { } ( ), , .i i jC c c c i j∩= = = ∅ ≠� i
i

b D

Problem of classification is a definition of the class to which a document belongs.
For each element b the feature set is put in compliance with {wi} which is a set of terms
in the document. Further the set of documents defining the class is called the training
selection.

Moreover the classification algorithm is applied to allocate documents to the most
corresponding class.

Applying Bayes’ theorem (6.1) for classification of documents, the following as-
sumptions should be considered

( ) ( )
( ) ,
j

j
j

j

n c
P c

n c
=

∑

where n(cj) is a quantity of terms in the class cj.

It is supposed that all terms (words, phrases) are independent, respectively

( )
( )

,
( | ) ,

i j
i j

j

n w c
P w c

n c
=

where:
{wi} – the set of terms in the document b,

n(wi, cj) – quantity of terms wi in the class cj.

For determining the suitable category of documents for the considered docu-
ment, it is necessary to receive the corresponding set of words in appropriate form.
The structure of the set of word forms includes only non-repetitive words (wi) and their
counters (ni).
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Determination of suitable category begins with the root of the tree referring to the
set of statistics. Let M denote the quantity of the statistic set in this node of the tree.
The categories according to which we check the belonging of documents are marked by
cj ( j = 0, ..., M – 1). For each word wi we find this word and the corresponding counter
in each set of statistics. Then n(wi, cj) (here j = 0,1, …, M – 1) is a number of category
(the set of statistics)). Through n(cj) let’s designate number of documents in category j-th.
Besides, let

( ) ( )
( )

,
,

i j
j i

j

n w c
N w

n c
=

be a rated counter of the word wi in category j-th.
Then the probability of matching a unique word wi (i.e. each word occurs only

once) with j-th category will be equal

( )
( ) ( )( | ) ,j i

j i i j
i

N w
P c w n w c

S w
= (6.2)

where

( ) ( )
1

0
.

M

i j i
j

S w N w
−

=
= ∑

If P(cj|wi) = 0 then it is necessary to take this number equal to a small value, for
example, equal.

Then the probability that the document corresponds to category cj ( j = 0, ..., M – 1)
will be equal

{ } ( )( | ) ( | ),j i j j i
i

P c w P c P c w= ∏

where it reflects all words of the studied set of word forms and

( ) ( )
( )

1

0

.
j

j M

j
j

n c
P c

n c
−

=

=

∑

is the prior probability of meeting category cj.  Let’s notice that if the document con-
tains a large number of words which do not match category cj ( j = 0, ..., M – 1), that
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value P(cj|{wi}) can go beyond definition of the variable. Therefore, it is necessary to
control the value P(cj|{wi}), and if it exceeds the value of the variable, then it should
be limited to a fixed small number, for example, simply take a value of 0.

If linking words are not discarded (i.e. the ones which do not bear any information
on the subject of the text, for example, words “then”, “if”, “but”, etc.), then it makes
sense to reduce influence of words which occur in the large number of categories. For
this purpose it makes sense to use the following formula

( )
( ) ( ) ( )

1 / 2
( | ) , log ,

1 / 2
j i

j i i j
i i

N w M
P c w n w c

S w M w
+=

+

where M(wi) is the amount of categories in which the word wi occures.

Let’s notice that if all categories contain all words of the document, then the algo-
rithm will show discrepancy. Thus, this case (when all categories contain all words) has
to be processed with use of the formula (6.2).

After the first step we define k-pieces of categories with the greatest value
P(cj|{wi}). We keep their name and values P(cj|{wi}). According to the name of each
of these sets, we come into the corresponding point and we carry out processing. If
information is absent, then this point is missed. After that all categories defined in the
first stage will be processed. Then from the newly created and from the categories from
the previous stage only k categories with the highest value P(cj|{wi}) are selected. We
keep their name and values P(cj|{wi}), then, we pass to the following step, but only on
those categories, which were not kept on the previous step. The process is continued
until there are categories on which it is possible to carry out the check.

The result of the program implementation will be selected k categories, the most
probable for the examined document, from the point of view of Bayes criterion.

6.4.1. Example of sale of the Naive Bayes classifier

Let’s review the program example of sale employing the naive Bayesian classifier.
As a model task1 we will consider the following one: On many websites devoted to
movies, books, goods there is an opportunity to leave responses reviews. Let’s try to
teach the classifier to distinguish the negative review from the positive one.

For this purpose we will prepare several examples of positive and negative re-
views, i.e., we will make so-called training with the teacher. As parameters by which the

1 The formulation of the task and location of input data it is spotted on the following webpage
http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html.
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qualifier will try to determine emotional coloring of the text there will be separate
words which are present at texts or more precisely, frequencies of their occurrence
in the texts.

For simplification of the program, we will make it as a console application, and
we will place all examples (training and text) directly in the source code. Let’s
begin with the general scheme of use of the classifier (see program.py file). In the body
of the main class of the program the classifier copy is announced. We will consider it
slightly below.

Further there are two examples of negative responses (class “–”) and two positive
(class “+”). These examples are transferred to the qualifier for training (creation of
statistics). And then the qualifier is tested on one obviously positive and one obviously
negative example.
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Let’s consider actually algorithmic part of the classifier now – the class Classifier.
The main two methods, which are visible to other classes are the method starting

after-training, and the method which is carrying out actually classification namely
GetHypotesis(). Let’s start with the class fields. Their assignment is included in their
names:
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The method starting training (after-training) is below:
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And, at last, the method classifying the text can take the following form:
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Here we see the algorithm described in the previous chapter. The number of doc-
uments in the class during the training was divided by the total number of documents
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and assumed as a priori probability. If the a priori probabilities are identical, it is possi-
ble to assign in this line just a value 1 (or any other, significantly positive value, differ-
ent from zero). The relative probabilities of hypotheses, but not their absolute values
are important. Calculation of probabilities comes from the number of occurrences
“on the fly”. It allows to use easily the class Classifier in the after-training mode when
incorrectly recognized text goes to the Train method. Also it is necessary to pay atten-
tion to an expression “(counter + 1)”. The added unit allows to avoid loss of accuracy
in case of contradictory data when in the evaluated text there are words which are
absent in both categories. Without the value of 1, the program would give us zero, and
other hits to this class (even in large numbers) would not matter.

Now we start the program and we look at the result:
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As we see, the result is quite reliable. Of course, you should not expect that this
classifier will show big accuracy in all cases. For this purpose it is necessary to make
some changes to it. For example, it is necessary to bring words, before their processing,
to the main word-form. Or at least to carry out the related lexemes. It is especially
urgent for morphologically rich languages e.g. Poland, Russian and Ukrainian.

Further, it is also desirable to consider chains of several words as parameters.
In the algorithm, to avoid loss of accuracy at long texts, it is necessary to use adding
their logarithms instead of multiplying probabilities (frequencies).
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It is possible to offer the set of such improvements, however we will let the readers
examine the implementation on their own.

6.4.2. EM algorithm

This section have a little difficult history. Most likely, the em-algorithm (EM- ex-
pectation–maximization) was explained by A. Dempster, M. Laird and D. Rubin in
1977 (Dempster et al. 1977).These days it is seen as one of the most used methods
dedicated for dividing mixed components data (see, for example, Roiger, Geatz 2003,
Press et al. 2007, Vapnik 2000, Dempster et al. 1977, Wu 1983, Idris 2014, Pedregosa
et al. 2011).

As it was already noted earlier, the Bayesian classifier leans on the fact that the
prior probabilities p(Ci) and conditional probabilities  p(x|Ci) are known. Unfortu-
nately, we do not always have such complete information.

Let’s consider one of the methods to solve this task. On the assumption that only
the general view of probability distribution is known, it is necessary to evaluate its
parameters. It is more often known that required distribution represents linear combi-
nation, for example, of normal or binomial distributions. In this case we say that the
distribution represents mixed normal and binomial (or others) distributions. In partic-
ular, if it is known that probability density function of each class is a normal distribu-
tion ( )2, ,i iN μ σ  it is necessary to evaluate its parameters μi, σi. For the Bayesian classi-
fier these parameters are known.

Let p(x|θi) be the probability density of the fact that observation is received from
i-th components of the mixture of distributions (see Fig. 6.5).

Fig. 6.5. The example of mixed distribution

Then ( ) ( ) ( ), ( | ) .i i i ip x p x P x p xθ = θ = ω
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Posterior probability p(θi|x) that the observation xj is received from i-th mixed
components, we will designate through gi, j. From the formula of the composite proba-
bility we will write out the normalization condition as follows

,
1

1, 1, ..., .
k

i j
i

g j n
=

= =∑

Then, at known  wi and pi(xj) from Bayes’ theorem, it is easy to receive

( )
( )

,

1

, 1, ... , 1, ..., .
i i j

i j k

j

p x
g i k j n

p xν ν
ν=

ω
= = =

ω∑

Function

( ) ( )
1

, ,
n

j i
j

F p x
=

Θ = θ∏

is called the function of credibility from ( ){ } 1
,

k
i i i=Θ = ω θ  on selection { }1, ..., .nX x x=

Traditionally using the maximum likelihood method (Maximum Likelihood Esti-
mate – MLE) the model search procedure is called

( )( )argmaxˆ .F
Θ

Θ = Θ

Let’s notice that owing to monotonicity algorithm we get

( )( ) ( )( )( )argmax arg max ln .ˆ F F
Θ Θ

Θ = Θ = Θ

Let’s show, that at known gi, j and using MLE, it is possible to receive the effective
method of estimation for the parameters of mixed distribution. Let’s write down MLE
in the following form

( ) ( ) ( )
1 1 1

ln ln , ln max
n n k

j i i i j
j j i

F p x p x
Θ= = =

Θ = θ = ω →∏ ∑ ∑

under the condition 
1

1.
k

ii= ω =∑
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We use the method of Lagrange multiplier, i.e. we write out the Lagrangian for
this task

( ) ( )
1 1 1

, ln 1 .
n k k

i i j i
j i i

L p x
= = =

⎛ ⎞
Θ Ω = ω − λ ω −⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑ ∑

Equating partial differential with variables coefficients wi to zero, we receive

( )
( )

( )1

1

, 0, 1, ..., .
n i j

k
i j

j

p x
L i k

p x=
ν ν

ν=

∂ Θ Ω = − λ = =
∂ω

ω
∑

∑

Multiplying both parts of the received quotient by wi and summing up them all i,
we get

( )
( )1 1 1

1

n k ki i j
ik

j i i
j

p x

p x= = =
ν ν

ν=

ω
= λ ω

ω
∑∑ ∑

∑

Noticing that

( )
( )1 1

1

d 1,1 an
k ki i j

ik
i i

j

p x

p x= =
ν ν

ν=

ω
= λ =ω

ω
∑ ∑

∑

we receive

1
1 and .

n

j
n

=
= λ λ =∑

Thus we get

( )
( )

,
1 1

1

1 1
, 1, ..., .

n ni i j
i i jk

j j
j

p x
g i k

n n
p x= =

ν ν
ν=

ω
ω = = =

ω
∑ ∑

∑
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Now, noticing that pi(x) depends on θi, we take the partial differential of the
Lagrangian where the variables are θi and we also equate it to zero i.e.

( )
( )

( )
1

1

, 0, 1, ..., .
n

i
i jk

i ij
j

L p x i k

p x=
ν ν

ν=

ω∂ ∂Θ Ω = = =
∂θ ∂θ

ω
∑

∑

We will extend each of components of the sum using the logarithmic derivate and
the result will be separate by pi(xj) respectively

( ) ( )
( )

( )

( )

1

1

,
1

, ln

ln 0, 1, ..., .

n i i j
i jk

i ij
j

n

i j i j
ij

p x
L p x

p x

g p x i k

=
ν ν

ν=

=

ω∂ ∂Θ Ω = =
∂θ ∂θ

ω

∂= = =
∂θ

∑
∑

∑

We receive from here

( ),
1

ln 0, 1, ..., ,
n

i j i j
i j

g p x i k
=

∂
= =

∂θ ∑

which corresponds to the necessary condition of the maximum in the problem of max-
imizing weighted function of credibility

( ),
1

ln max, 1, ..., .
n

i j i j
j

g p x i k
Θ=

→ =∑

Thus the EM (expectation and maximization) algorithm with the fixed number of
components of mixed distributions can be written down in the following form.

Let X = {x1, ..., xn} – be a selection of observations, k – number of components of
mixed distributions, ( ){ } 1

,
k

i i i=Θ = ω θ  – initial approach of mixed distribution parame-
ters, and ε – the number defining the stop algorithm.

The EM algorithm consists of consecutive application of two steps.
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E-step (expectation)

( )
( )

{ }

0
, ,

,

1

0
, ,

, 1, ..., , 1, ...,

x .

;

;

ma

i j i j

i i j
i j k

j

i j i j

g g

p x
g i k j n

p x

g g

ν ν
ν=

=

ω
= = =

ω

δ = −

∑

M-step (maximization)

( ),
1

,
1

ln max, 1, ..., ;

1
, 1, ..., .

n

i j i j
j

n

i i j
j

g p x i k

g i k
n

Θ=

=

=

ω = =

∑

∑

If δ > ε, we pass to the E-step, if δ ≤ ε we return the found mixed distribution
parameters ( ){ } 1

.,
k

i i i=Θ = ω θ
Let’s notice that if the type of density function is known, then the task of MLE can

be written out in an explicit form. Let’s consider the case when it is known that mixed
distributions consists of normal distributions ( )2, ,i iN μ σ  where i = 1, ..., k. Then the task

( ),
1

ln max, 1, ..., ,
n

i j i j
j

g p x i k
Θ=

→ =∑

will be registered in the following form

( )2

, 2
1

1
ln exp max, 1, ..., ,

2 2

n j i
i j

i ij

x
g i k

Θ=

⎛ ⎞⎛ ⎞− μ⎜ ⎟⎜ ⎟− → =⎜ ⎟⎜ ⎟σ π σ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑
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or that the same

{ }( ) ( ) ( )2

,1 2
1

, ln 2 max, 1, ..., .
2

n j ik
i i i j ii

ij

x
G g i k= Θ=

⎛ ⎞− μ⎜ ⎟μ σ = − σ π − → =⎜ ⎟σ⎜ ⎟⎝ ⎠
∑

Equating the partial differential equations to zero, we receive

{ }( ) ( )
,1 2

1
, 0,

n j ik
i j

i ij

x
G gν ν ν=

=

− μ∂ μ σ = − =
∂μ σ

∑

from here

,
1

,
1

.

n

i j j
j

i n

i j
j

g x

g

=

=

μ =
∑

∑

Similarly

{ }( ) ( ) ( )2 22

, ,1 3 3
1 1

1
, 0,

n nj i i j ik
i j i j

i i i ij j

x x
G g gν ν ν=

= =

⎛ ⎞ ⎛ ⎞− μ σ − − μ∂ ⎜ ⎟ ⎜ ⎟μ σ = − − = − =⎜ ⎟ ⎜ ⎟∂σ σ σ σ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑

thus, from here we receive

( )2,
12

,
1

,

n

i j j i
j

i n

i j
j

g x

g

=

=

− μ

σ =
∑

∑

which allows to receive distribution parameters in an explicit form.

Let’s notice that for the multidimensional case normal distribution is described by
the following expression

( )
( )

( ) ( )1
1 / 2/ 2 1

1 1
| , exp ,

22

T
i i i i i

n
i

p x x x−

−

⎛ ⎞μ = − − μ − μ⎜ ⎟⎝ ⎠π
Σ Σ

Σ
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where Σ is a complete correlation matrix. The use MLE allows to evaluate distribution
parameters as follows:

( )( )

,
1

,
1

,
1

,
1

,

.

n

i j j
j

i n

i j
j

n T
i j j i j i

j
i n

i j
j

g x

g

g x x

g

=

=

=

=

μ =

− μ −μ

Σ =

∑

∑

∑

∑

As an illustration of the algorithm “EM” – we show the example given by
O. Veksler (Veksler 2006). Suppose that we have 3 – classes, each class is 2-dimentional
Gaussian distribution with the same correlation matrix. We start with points shown in
Figure 6.6.

Fig. 6.6. Initial approach

We go through the E-step and the M-step and get the adjustment of the distribu-
tions shown in Figure 6.7.
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Fig. 6.7. The result of the first iteration

In the next iterations the adjustment of the distributions is getting better and bet-
ter as shown in Figures 6.8–6.10.

Fig. 6.8. The result of the second iteration

Fig. 6.9. The result after the third iteration
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Fig. 6.10. The result of application of twenty iterations

6.5. Linear discriminant analysis

Now, when we are able to evaluate parameters of mixed normal distributions, we
will consider the problem of classification.

Let ci (i = 1, 2, …, k) be given classes and gi(x) a function such that if
( ) ( ) t en .hi j ig x g x i j x c> ∀ ≠ ∈

Such function is called discriminant function or function dividing classes.
As discriminant function it is quite naturally used as an initial probability of hit to

the class ci in the occurrence of the event x

( ) ( | ).i ig x P c x=

Then according to Bayes’ theorem (6.1)

( ) ( )
( )

( | )
.i i

i
P x c P c

g x
P x

=

Because P(x) does not depend on classes, a discriminant function takes the follow-
ing form

( ) ( )( | ) .i i ig x P x c P c=

Due to the fact that the logarithm is a monotone function it is possible to use
equivalently a discriminant function

( ) ( )ln ( | ) ln .i i ig x P x c P c= +
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If data of the class ci are distributed under the normal law N(μi, Σi)

( )
( ) ( )1

1 / 2/ 2 1

1 1
( | ) exp ,

22

T
i i i i

n
i

p x c x x−

−

⎛ ⎞= − − μ Σ − μ⎜ ⎟⎝ ⎠π Σ

then

( ) ( ) ( ) ( ) ( )1 11 1
ln 2 ln ln .

2 2 2
T

i i i i i i
n

g x x x P c− −= − − μ Σ − μ − π − Σ +

As ( )2 ln 2n π  is constant, the discriminant function can be written down in the
equivalent form

( ) ( ) ( ) ( )1 11 1
ln ln

2 2
T

i i i i i ig x x x P c− −= − − μ Σ − μ − Σ + (6.3)

From here, simplifying the expression, we get

( ) ( ) ( )

( )

1 1 1 1

1 1 1 1

1 1
2 ln ln

2 2

1 1 1
ln ln

2 2 2

T T T
i i i i i i i i i

T T T
i i i i i i i i

g x x x x P c

x x x P c

− − − −

− − − −

= − Σ − μ Σ + μ Σ μ − Σ + =

⎛ ⎞ ⎛ ⎞= − Σ + μ Σ + − μ Σ μ − Σ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(6.4)

Noticing that

,
1 1

,Wx
= =

= ∑ ∑
n n

T
i j i j

i j

x w x x

we receive the square function

( ) ,T
i i i ig x x A x B x D= + +

where

( )1 1 1 11 1 1
, , ln ln .

2 2 2
T T

i i i i i i i i i iA B D P c− − − −= − Σ = μ Σ = − μ Σ μ − Σ +
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Thus, the discriminant function will be comprised of the arches of the second or-
der curves (ellipses, parabolas and so forth).

Let’s give several special cases of creating the discriminant function.
Let

( )

2

2
2

2

0 0

0 0
1, ..., ,

0 0

i I i k

⎛ ⎞σ
⎜ ⎟
⎜ ⎟σ⎜ ⎟Σ = σ = =
⎜ ⎟
⎜ ⎟
⎜ ⎟σ⎝ ⎠

�

�

� � � �

�

be random variables (X1, X2, ...,  Xn) which are independent with the different ensem-
ble average, but with the same dispersion. In this case

2

1 22
2

2

1
0 0

1
0 01

and

1
0 0

.n
i iI−

⎛ ⎞
⎜ ⎟σ⎜ ⎟
⎜ ⎟
⎜ ⎟

Σ = = Σ = σσ⎜ ⎟
σ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟

σ⎝ ⎠

�

�

� � � �

�

Noticing that at the same time 11/2 ln i
−Σ  is constant, from (6.3) we get the follow-

ing form of the discriminant function

( ) ( ) ( ) ( )

( ) ( )

2

2

1
ln

2

1
ln ,

2

T
i i i i

T T T T
i i i i i

g x x x P c

x x x x P c

= − − μ − μ + =
σ

= − − μ − μ + μ μ +
σ

and as xTx  does not depend on classes, we receive

( ) ( ) ( )2
1

2 ln
2

T T
i i i i i i ig x x P c a x b= − − μ + μ μ + = +

σ
(6.5)

where

( )2 2and ln .
2

T T
i i i

i i ia b P c
μ μ μ

= = −
σ σ
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Thus, in this case discriminant function is linear, that is, for two variables it is the
straight line, for three – the plane, and generally – the hyperplane.

Let’s notice that if at the same time all ( ) 1 , 1, 2, ..., ,iP c k i k= =  symmetric dis-
criminant functions lead to Veronoi splitting.

Furthermore let Σi = Σ  (i = 1, 2, 3, …, k), then the value 11 2 ln i
−Σ  does not de-

pend on the class, and, from (6.3) we receive the following discriminant function

( ) ( ) ( ) ( )

( ) ( )

2

2

1
ln

2

1
ln ,

2

T
i i i i

T T T T
i i i i i

g x x x P c

x x x x P c

= − − μ − μ + =
σ

= − − μ − μ + μ μ +
σ

As 1Tx x−Σ  does not depend on classes, we finally receive

( ) ( ) ( )1 11
2 ln

2
T T

i i i i i i ig x x P c a x b− −= − − μ Σ + μ Σ μ + = + (6.6)

where

( )
1

1 and ln .
2

T
T i i

i i i ia b P c
−

− μ Σ μ= μ Σ = −

Therefore, in this case the discriminant function is linear too.

6.5.1. Example 5.1

Let three classes be described by normal distribution with parameters shown below:

( )1 2 3
0 2 2 4 0

, , and , 1, 2, 3 .
0 2 1 0 4

i i
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

μ = μ = μ = Σ = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Besides, let the prior probabilities of loss of classes are given

( ) ( ) ( )1 2 3
5 1 1

, , .
12 4 3

= = =P c    P c   P c
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According to (6.5), we will write down the discriminant functions:

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

2

1

2 1 2

2

1

3 1 2

2

0,0 5 0
ln 0.8754683,

4 12 8

2,2 1 8 1
ln 2.3862943 ,

4 4 8 2

2, 1 1 5 1
ln 1.7261229 2 .

4 3 8 4

x
g x

x

x
g x x x

x

x
g x x x

x

⎛ ⎞ ⎛ ⎞⎜ ⎟= + − = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎜ ⎟= + − = − + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞⎜ ⎟= + − = − + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Then the function dividing the classes c1 and c2 will be equal

( ) ( )

( )

1 2

1 2 1 2

0.6931471806

1
2.098612289 3.0217 0.

2

g x g x

x x x x

= ⇒ − =

= − + + ⇒ + − =

The function dividing classes c1 and c3 will be in the following form

( ) ( )

( )

1 3

1 2 1 2

0.6931471806

1
2.416759469 2 2 3.39257 0.

4

g x g x

x x x x

= ⇒ − =

= − + − ⇒ − − =

And, at last

( ) ( ) ( )

( )

2 3 1 2

1 2 2

1
2.098612289

2

1
2.416759469 2 0.883576.

4

g x g x x x

x x x

= ⇒ − + + =

= − + − ⇒ =

Let’s notice that g1(x) = g2(x) = g3(x) has the solution of x1 = 2.138075,
x2 = 0.883576. It is illustrated in the Figure 6.11.
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Fig. 6.11. The first example of symmetric discriminant functions

6.5.2. Example 5.2

Let three classes be described by normal distribution with parameters put below

( )1 2 3
0 2 2 2 1

, , and , 1, 2, 3 ,
0 2 1 1 2

i i
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

μ = μ = μ = Σ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

furthermore let the prior probabilities of loss of classes take the following values

( ) ( ) ( )1 2 3
5 1 1

, , .
12 4 3

P c P c P c= = =

According to (6.4), we will write out discriminant functions as follows:

( )

( ) ( )

( )

1

2 1 2

3

0.8754683,

5.3862943 2 ,

2.09861229.

g x

g x x x

g x x

= −

= − + +

= −

Then the function dividing classes c1 and c2 will be in the following form

( ) ( )1 2 1 2 2.2554128 0.g x g x x x= ⇒ + − =

The function dividing classes c1 and c3 will be equal

( ) ( )1 3 1 1.2231435 0.g x g x x= ⇒ − =
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And, at last

( ) ( )2 3 1 22 3.28768.g x g x x x= ⇒ + =

In this example g1(x) = g2(x) = g3(x) has the solution of x1 = 1.22314255,
x2 = 1.03226926.

Received result is shown in Figure 6.12.

Fig. 6.12. The second example of symmetric discriminant functions

6.5.3. Example 5.3

Let’s take three classes whose data are described by normal distribution with pa-
rameters displayed below.

1 2 3 1 2 3
0 2 2 2 1 2 0 2 1

, , and , , ,
0 2 1 1 1 0 2 1 2

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
μ = μ = μ = Σ = Σ = Σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

and a priori probabilities of loss of classes which have the following value

( ) ( ) ( )1 2 3
5 1 1

, , .
12 4 3

= = =P c   P c   P c

According to (6.4), we will write down discriminant functions:

( )

( )

2 2
1 1 1 2 2

2 2
2 1 2 1 2

1
0.875468,

2

1 1
2.693147.

4 4

g x x x x x

g x x x x x

= − − − −

= − − + + −
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Then the function dividing classes c1 and c2 can be equal

( ) ( ) 2 2
1 2 1 1 2 2 1 2

1 3
1.81767 0.

4 4
= ⇒ − − − − − + =g x g x x x x x x x

The function dividing classes c1 and c3 can take the following form

( ) ( ) 2 2
1 3 1 1 2 2 1 2

1 4 2 5 4
2.00717 0.

6 3 3 3 3
g x g x x x x x x x= ⇒ − − − − + + =

And, at last

( ) ( ) 2 2
2 3 1 2 1 2 2 1

1 1 1 7 1
0.18949 0.

12 12 3 3 6
g x g x x x x x x x= ⇒ + − + − + =

Received result is shown in Figure 6.13.

Fig. 6.13. The example of square discriminant functions
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7. Use of genetic algorithms
for creation of the vector classifiers

In this paragraph we will consider the discriminatory analysis based not on
the concept of distance between elements but on the criterion of proximity constructed
on calculating a cosine of the angle between two vectors. On the example of the clas-
sification of texts will be given a detailed algorithm. (see in Slaton, Buckley 1988,
Shumeyko, Sotnik 2009, 2011, Swidan et al. 2013 and also in Charu 2015, Layton 2017,
Raschka 2015).

The first step consists of preprocessing the data – creating sets of statistics for
the available classes. For the creation of the set of statistics all sets of word forms bv,

v = 0, ..., M – 1 are processed consistently, belonging to one class { } 1

0
.

M
B b

−ν
ν=

=  On the

set of word forms of each processed text bv a set of unique (not repeating) word forms
and their counters is built ( )( ), 0, ..., 1 ,i iw n i Nν ν ν= −  where Nv – number of unique
word forms in the text bv. After that data for each document are normalized separately
in the following form

( )
( )

1 2

0

0, ..., 1 .i
i

N

j
j

n
n i N

n
ν

ν
ν ν

−
ν

=

= = −

∑

Then, we arrange all words of each document in the same order (the word
order is not essential, the main thing is that words in each of structures

( )( ), 0, ..., 1i iw n i Nν ν ν= −  have to be the same order) and we find the sum of all vectors

( ) ( )( )1
0

0, ...,
M

i ij
n B n i N B

− ν
=

= =∑  (where N(B) – a quantity of unique word forms in

class B in general) also we normalize it by its unit as follows

( ) ( )

( )( )
( ) 2

0

.i
i

N B

j
j

n B
n B

n B
=

=

∑
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For the received central point of the class we create the set of statistics, writing
down in it values ( ) ( )( ) ( )( ), 0, ..., .i iw B n B i N B=

For creating the central vector of classes { } 1

0

K
B

−μ
μ=

 where each class Bμ is described

by the central vector ( ) ( )( ) ( )( ), 0, ..., ,i iw B n B i N Bμ μ μ=  we need to find their sum.
Having summed up all coordinates from all vectors for each value of the word form, for
the word form ω we receive the coordinate

( ) ( ) ( ) ( ){ }
1

0
| , 0, ..., .

K

i in n B B i N B
−

μ μ μ

μ=
ω = ω = ω =∑

Therefore, it is necessary to make the list of unique word forms on all central

vectors of classes { } 1

0

K
B

−μ
μ=

 and to sum up their coordinates. The set consisting their

unique (not repeating) word forms and their coordinates can be result

{ } { } { }1 1 1

0 0 0
, 0, ..., ,

K K K
i iw B n B i N B

− − −μ μ μ
μ= μ= μ=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

where { } 1

0

K
N B

−μ
μ=

⎛ ⎞
⎜ ⎟⎝ ⎠

 is a quantity of unique word forms of the set of classes { } 1

0
.

K
B

−μ
μ=

 It

is necessary to normalize the received coordinates

{ }
{ }

{ }
{ } 1

0

1

01

0
21

00

,
K

K
i

K
i

N B
K

j
j

n B

n B

n B

−μ
μ=

−μ
μ=−μ

μ= ⎛ ⎞
⎜ ⎟⎝ ⎠ −μ

μ==

⎛ ⎞
⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

and, the received vector { } { } { }1 1 1

0 0 0
, 0, ...,ˆ

K K K
i iw B n B i N B

− − −μ μ μ
μ= μ= μ=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 can

be the central vector of the set { } 1

0
.

K
B

−μ
μ=

Ideally created classification of the vector method is such set of classes { } 1

0
,

K
B

−μ
μ=

for which the following condition is satisfied: , 0, ..., 1b B Kμ∀ ∈ μ = −

( ) ( ) ( ) ( ), , ,n b n B n b n Bμ ν< ν ≠ μ (7.1)
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Let’s consider the vector Λ (control vector) of dimension N(Bμ), which coordi-
nates accept only one of two admissible values

0
.

1i
⎧⎪λ = ⎨
⎪⎩

Through Λb let’s designate the direct product of vectors Λ and b, that is

( ) ( ) ( ) ( ) ( )0 0 1 1, , ..., .
N B N B

b n b n b n bμ μ
⎛ ⎞Λ = λ λ λ⎜ ⎟
⎝ ⎠

Let’s call the control Λ admissible on the class { } 1

0
,

Mk
k

B b
−μ

=
=  if the condition (7.2)

is satisfied

( ) ( ) ( ) ( ), , , , 0, 1, ..., 1k kn b n B n b n B k Mμ νΛ Λ < Λ ν ≠ μ = − (7.2)

Admissible control vector Λ which fulfils this inequality (7.2) and at the same time

fulfils the condition ( )21
0

max,
M k
k

b
−

= Λ →∑  is called the optimum.
If for v ≠ u the set of admissible controls is degenerated, the class { } 1

0

Mk
k

B b
−μ

=
=  is

defined incorrectly, i.e. it is inseparable from the class Bv.
The problem of finding the optimum control by classical methods is rather diffi-

cult therefore we will apply genetic algorithms to this tasks (see Rana 1999).
For that matter, the single-point crossing over (single-point crossover) is used.

It is modeled as follows: Let there are two parent individuals with chromosomes
{ }{ }, 0, ...,iX x i L= ∈  and { }{ }, 0, ..., .iY y i L= ∈  In a random way the point in the chro-

mosome is defined (discontinuity point) in which both chromosomes are divided into
two parts and we exchange them. After processing reproduction we can get mutations.
It is reached because accidentally chosen gene in the chromosome changes.

For creating a new population we use the elite selection. Intermediate population
which includes both parents, and their descendants is created. Members of this popula-
tion are evaluated, we get out from them the best N ones (suitable) which will enter the
next generation.

The result of applicating the genetic algorithm to the problem of reducing class
dimension, is given in Figure 7.1.

Let’s notice that the vector method as a criterion of quality uses the size of the
scalar product of basis vectors, thus, the class of unit vectors (documents) is limited on
the sphere by the circle with the center at the end of the central vector of the class.
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Fig. 7.1. The chart of reduction of dimension of categories
when using genetic algorithms

As sphere cuts on the circle cannot densely pack all surface of the single sphere, there
is a point set (basis vectors) which cannot essentially get to one class. Thus, there is the
need to break the point set on the single sphere so that elements of this splitting can
pack all surface of the single sphere densely, which allows to classify any document
unambiguously.

7.1. Use of Veronoi polyhedron
in the problem of texts classification

For any center of a system {A} it is possible to specify an area of space where all
points are closer to this center, than to any other center of the system. Such area is
called the Veronoi polyhedron or Veronoi area. The Veronoi area usually carries to the
polyhedron also its outer surface. In three-dimensional space the Veronoi area for any
i center of systems {A} is a convex polyhedron, in two-dimensional space it is a convex
polygon. Formally Veronoi polygons Ti in R2 are defined as follows

( ) ( )2{ : , , },i i jT x R d x x d x x j i= ∈ < ∀ ≠

where d is a distance function.

Creating an approximation relies on fundamental property for randomly selected n
set points on the plane S. For any node from n on the plane, there is the great number of
natural neighbors N. The concept of natural neighbors is closely connected with split-
ting the Veronoi area cells. For the nonempty Veronoi cell V(R), where R ⊂ S the natu-
ral neighbors for a vertex of Delon’s triangles r ∈ R, are the points incidental to V(R).
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The two-dimensional Veronoi polyhedron (polygon on the plane) is shown in the
Figure 7.2. The Veronoi lines which generate edges of the polygon are called the forming
lines and the relevant centers of system are the geometrical neighbors of the center A.
Among geometrical neighbors (natural) we can distinguish two kinds of them. For the
first kind the bisecting point of a segment connecting it to the central node lies on
the verge of the Veronoi polyhedron. For the second kind the bisection point is out
of the edge and, therefore, out of the polyhedron.

Fig 7.2. The Veronoi polyhedron (polygon) for the center A
in two-dimensional system

Veronoi polyhedrons, the systems constructed for each center{A}, give the mosaic
of polyhedrons – splitting Veronoi points (see Fig. 7.3). Veronoi polyhedrons sys-
tems {A} do not enter each other and fill the space, being adjacent on the whole edges.
Splitting space into Veronoi polyhedrons unambiguously is defined by system {A} and
vice versa clearly defines the system.

Fig. 7.3. The Veronoi chart on the plane

Using the design of Veronoi charts in relation to points on the multidimensional
single sphere, we receive splitting all basis vectors of documents into natural classes.
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Borders of the classes will be the hyperplanes dividing spherical Veronoi polyhedrons.
At the same time, points on the single sphere (ends of basis vectors of documents)
which in relation to all hyperplanes limiting this class lie on the same side of sphere,
will belong to one class, as the central vector of this class.

7.2. Check of the existing classification
on the correctness

Let classes of documents be checked for the splitting correctness Cv and Cμ. For
corresponding basis vector (the central vectors) ˆ ˆ, ,C Cν μ  we build a difference vector

( ) ( ){ },
ˆ ˆ ˆ ˆi iC C n w n wν μ

ν μ ν μΔ = − = −
�

and a sum vector

( ) ( ) ( ){ },
1 1

.
2

ˆ
2

ˆ ˆ ˆi iC C n w n wν μ
ν μ ν μΞ = + = +

�

The new vector is created as the arithmetic mean of two vectors. Let’s designate it
through , .ν μΞ  Let’s lead a plane through the point ,ν μΣ  with the normal vector , .ν μΔ

�

( ), , , 0v vPμ ν μ μΩ = Δ ⋅ − Ξ =
�

(7.3)

This plane splits the classes. To have classes splitted correctly, all points (docu-
ments) of one class should be on the one side of the plane, that is if b ∈ Cv, then

( ) ( ), , , ,
ˆˆ 0.C bν μ ν ν μ ν μ ν μΔ ⋅ − Ξ Δ ⋅ − Ξ ≥

� �

The points for which this condition is not satisfied need to be considered with
their belonging to category Cμ.

The circumstance when categories have non-empty crossing is possible. For exam-
ple, the category „AUTHOR” contains documents on mathematics (this author) and
the category „SCIENCE” contains documents on mathematics of the same author. In
this case it is necessary to allocate non-empty crossing of these categories and, further,
either to localize this category, or to address it to both categories.

For solving this problem the following method can be taken into account. Let’s
consider categories Cv and Cμ. Let’s split them by the plane (7.3) collect and all points
lying on the one side in two new categories * *and .C Cν μ
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Let

( ) ( ), ,
,

,
,

B
d B

ν μ ν μ
ν μ

ν μ

Δ ⋅ − Ξ
Ω =

Δ

�

�

be a distance from the point B ={bi} to the plane Ωv,μ.
If the condition is satisfied (that is, after cutting off of data both categories are

removed from each other)

( ) ( )
( ) ( )

*
, ,

*
, ,

, , 0,

, , 0,

d C d C

d C d C

ν ν μ ν ν μ

μ ν μ μ ν μ

⎧ Ω − Ω >
⎪
⎨
⎪ Ω − Ω >⎩

then categories Cv and Cμ have nonempty crossing ,C�  which can be defined as follows
b C∈ �  if b ∈ Cv and at the same time

( ) ( ), , , ,
ˆˆ 0,C bν μ ν ν μ ν μ ν μΔ ⋅ − Ξ Δ ⋅ − Ξ <

� �

or, if b ∈ Cμ and

( ) ( ), , , ,
ˆˆ 0.C bν μ μ ν μ ν μ ν μΔ ⋅ − Ξ Δ ⋅ − Ξ <

� �

It is natural that the problem of classes dimension reduction is also urgent for the
method constructed on Veronoi charts. For this purpose, as well as in the previous
case, genetic algorithms were used.

Comparative analysis of application of different discriminatory analyses to test
base of documents by Reuters (see Reuters-21578 text categorization…) is given in the
following figures (see Fig. 7.4–7.6).

Fig. 7.4. The result of applicating the algorithm of Bayes



286

Fig. 7.5. The result of applicating the vector algorithm

Fig. 7.6. The result of applicating the algorithm based on Veronoi charts

So, to test the Reuters base, provided they hit the right class of not less than 90�
documents they managed to reduce the class space by about 10� to 50�.
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8. Support vector machines

The method of support vectors (SVM – Support Vector Machines) is included in
the set of algorithms called “supervised learning”. They are effectively used in prob-
lems of classification. In 1963 Vapnik and Learner (Vapnik, Learner 1963) proposed
an algorithm which finds the maximal margin between the fixed boundary and the
nearest points of each class if the data are linearly separable. The next work by Vapnik
and Chervonenkis is the cornerstone of SVM. (see Vapnik, Chervonenkis 1964, 1974,
Vapnik, Learner 1963, Vapnik 1998, 2000, Chapelle, Vapnik 1999, and also Charu
2015, Han et al. 2011, Hastie 2009, Cristianini, Shawe-Taylor 2000, Joachims 2009,
Pedregosa et al. 2011). SVM method belongs to the family of linear qualifiers (Support
Vector Machine…).

8.1. The main idea

In the previous section (see section 2 or section 6) we considered the simplest
discriminant functions realizing the linear qualifier (see Fig. 8.1). It can be written
down in the form ( ) 0,tg x w x w= +  where

( ) [ ] ( ) [ ]0 Class 1 and 0 Class 2 .g x x g x x> ⇒ ∈ < ⇒ ∈

Fig. 8.1. Symmetric determinant functions
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Thus the dividing (discriminant) function is described by the equation ( ) 0.g x =
The distance between the point x and the point of dividing function ( ) 0g x =  is equal

0
.

tw x w

w

+

Fig. 8.2. The maximum dividing corridor

Let xi lie on short circuit of border, that is 0 1.+ =t
iw x w  Border width of the di-

viding margin, is chosen as wide as possible (see Fig. 8.2). Considering that short strip
of border meets the condition 0 1,+ =t

iw x w  the distance from xi to ( ) 0g x =  is

0 1+
=

tw x w

w w
(8.1)

thus, width of the dividing strip is equal 2 w  (see Fig. 8.3).

Fig. 8.3. Illustration of creating support vectors
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To exclude points from the dividing margin, we will write out the condition of be-
longing to classes:

0

0

1 if belongs to class 1,

1 if belongs to class 2.

t
i i

t
i i

w x w x

w x w x

⎧ + ≥⎪
⎨
⎪ + ≤ −⎩

Let’s enter the index function:

1 if belongs to class 1,

1 if belongs to class 2.

=⎧⎪
⎨

= −⎪⎩

i i

i i

u  x

 u x

Thus, the problem of estimating the dividing function generating the corridor
of the greatest width is can be written down as a problem of minimizing in the follow-
ing form

( ) 21
min

2
J w w= → (8.2)

under the condition ( )0 1t
i iu w x w+ ≥  for all i.

The objective function is a square function, so this task has the only one resolve.

8.2. SVM for linear separable set

According to Kuhn-Tucker’s theorem the condition (8.2) is equivalent to the fol-
lowing

( )
1 1 1

1
max

2

n n n
T

i i j i j i j
i i j

L u u x x
= = =

α = α − α α →∑ ∑ ∑ (8.3)

provided that α ≥ 0 for all i and 
1

0,
n

i ii
u= α =∑  where { }1, ..., nα = α α  are new vari-

ables. Let’s rewrite L(α) in the matrix form

( )
1 1

1

1
,

2

T
n

i
i

n n

L H
=

α α⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

α = α − ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥α α⎣ ⎦ ⎣ ⎦

∑ � �

where coefficients of the matrix H are calculated as follows

, .T
i j i j i jH u u x x=

The task L(α) → max is solved by methods of quadratic programming.
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After finding the optimum { }1, ..., nα = α α  for each i the conditions are verified:

– αi = 0 (it corresponds i that is not a support vector),
– αi ≠ 0 and ( )0 1 0t

i iu w x w+ − =  (it corresponds i that is a support vector).
Then w from the ratio 8.1 can be found 

1
n

i i ii
w u x== α∑  and the value w0 is cal-

culated considering that for any αi > 0 and ( )0 1 0t
i i iu w x w⎡ ⎤α + − =⎢ ⎥⎣ ⎦

0 .
1 t

i
i

w w x
u

= −

Then, at last, the discriminant function is received

( ) ( ) 0{ | } .
T

i i i ig x u x x S x w= α ∈ +∑
It is important to notice that summing is carried out not on all vectors but only on

the set S which represents the set of support vectors i.e. { | 0}.i iS x= α ≠

8.3. SVM for nonlinear separable set

Unfortunately, the described above algorithm is implementable only for linearly
separable sets In practice such sets are not met frequently. In 1995 Cortes and Vapnik
proposed modified algorithm for solving the problem for nonlinear separable sets (see
Cortes, Vapnik 1995, Boser et al. 1992, Chapelle, Vapnik 1997, Hamel 2009). Let’s
look at the modernization of the algorithm for the case of nonlinearly separable sets.

In order to allow misclassification in the model, additional variables ξi, which
characterize the mistake size on each object of xi are entered. In the objective function,
the penalty for the aggregate error is introduced by the following form

( )

2

1

0

1
min

2

1 , 1, ...,

0, 1, ...,

n

i
i

t
i i i

i

w

u w x w i n

i n

=

⎧
+ λ ξ →⎪

⎪⎪
⎨

+ ≥ − ξ =⎪
⎪
⎪ξ ≥ =⎩

∑
(8.4)

where λ is the parameter specifying the cost of misclassifications. It allows to control
the relation between maximizing width of the dividing strip and minimization of the
aggregate error (see Boser et al. 1992, Hamel 2009).

Penalty size ξi for the corresponding object xi depends on the arrangement of the
object in dividing strip. So, if xi lies on the opposite side of discriminant function, then
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the penalty size is ξi > 1. If xi lies in the dividing strip, but on the same side of discrim-
inant function as the class, then the corresponding weight can take a value 0 < ξi <1.
For the ideal separable case the penalty size is ξi < 0 (see Fig. 8.4).

Fig. 8.4. Points to which penalties are applied

Then the task (8.4) can be rewritten in the form below (see Boser et al. 1992)

( ) ( )2
1

1

1
, , ..., 0 min

2

n

n i
i

J w w I
=

ξ ξ = + β ξ > →∑ (8.5)

that is in the way of minimization elements which do not represent the ideal case par-
ticipate. Here

1, 0,
( 0)

0, 0,

i
i

i

I
ξ >⎧⎪ξ > = ⎨
ξ ≤⎪⎩

when conditions ( )0 1t
i i iu w x w+ ≥ − ξ  and ξi ≥ 0 are fulfilled. In the formula (8.5) the

constant β is the weight considering the bandwidth. If β is not enough, then we allow to
arrange relatively many elements in the imperfect position, that is, in the dividing strip.
If β is big, then we demand existence of small quantity of elements in the imperfect
position, that is, in the dividing strip.

Unfortunately in (8.5), the problem of minimization is rather difficult, be-
cause of discontinuity I(ξi) Instead we will consider a value of minimization

( ) ( )2
1 1

, , ..., 1 2
n

n ii
J w w =ξ ξ = + β ξ∑  with restrictions for all i in the following form

( )0 1
.

0

t
i i i

i

u w x w⎧ + ≥ − ξ⎪
⎨
⎪ξ ≥⎩
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Using Kuhn-Tucker’s theorem, we receive

( )
1 1 1

1
max

2

n n n
T

i i j i j i j
i i j

L u u x x
= = =

α = α − α α →∑ ∑ ∑ (8.6)

provided that 
1

0 , and 0.
n

i i ii
i u=≤ α ≤ β ∀ α =∑

From the ratio (8.4) we can find 
1

.
n

i i ii
w u x== α∑  The value w0 can be find, consid-

ering that for all i ( )00 and 1 0.t
i i i iu w x w⎡ ⎤≤ α ≤ β α + − =⎢ ⎥⎣ ⎦

The other idea of the SVM method (in the case when a linear division of classes
is impossible), is transition to the space of higher dimension in which such division is
possible (see more in Bordes et al. 2005, Burges 1998, Christiani, Shawe-Taylor 2000,
Hamel 2000, Rossi, Villa 2006).

For solving the nonlinear classification problem by the linear qualifier it is nec-
essary:

– to design data x in space of higher dimension by means of transformation ϕ(x),
– to find a symmetric discriminant function for data ϕ(x).

The received nonlinear discriminant function can be written down in the following
form

( ) ( ) 0.tg x w x w= φ +

The received in section 8.2 symmetric discriminant function for two-dimensional
data X can take a form

( )

( )
[ ]

( )

( )

1 1

1 1 0
2 2

.
x x

g w w w
x x

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥= +
⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

The one-dimensional discriminant function for nonlinear separable data using the
function ϕ(x) = (x, x2) is written as follows

( ) 2
1 2 0.g x w x w x w= + +
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The example is shown in Figure 8.5. For transferring data to the space of higher
dimension we used so-called kernel functions.

Fig. 8.5. An example of linear division of sets upon transition
to space of higher dimension

Let’s go back to the written above (eq. (8.6)) extremum problem of the method of
support vectors given in the following form

( )
1 1 1

1
max.

2

n n n
T

i i j i j i j
i i j

L u u x x
= = =

α = α − α α →∑ ∑ ∑

Let’s notice that the optimization depends on the formula .T
i jx x  If we transfer xi

to the space of higher dimension using the display function ϕ(x), then it is necessary to

calculate the similar formula in the space of higher dimension ( )( ) .T
i jx xϕ ϕ

The idea of the method requires finding a kernel function ( ) ( ), ( )T
i j i jK x x x x= ϕ ϕ

and to maximizing the following objective function

( ) ( )
1 1 1

1
, max.

2

n n n

i i j i j i j
i i j

L u u K x x
= = =

α = α − α α →∑ ∑ ∑
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Let’s review the new example and take the kernel function in the form
( ) 2., ( )TK x y x y=  It is simple to find out the display ϕ(x) corresponding to the kernel

function.

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )

2
1 21 2 1 1 2 22
2

2 21 1 1 1 2 2 2 2

2 2 2 21 1 2 2 1 1 2 2

, ( )

2

, 2 , , 2 , .

T

T

y
K x y x y x x x y x y

y

x y x y x y x y

x x x x y y y y

⎛ ⎞⎡ ⎤
⎜ ⎟⎡ ⎤ ⎢ ⎥= = = + =⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

= + + =

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Thus, the display function can be written in the following form

( ) ( )( ) ( ) ( ) ( )( )2 21 1 2 2, 2 , .x x x x x
⎡ ⎤

φ = ⎢ ⎥
⎣ ⎦

 

It is important to notice that the choice of kernel function is rather difficult.

8.4. Example

Let’s review the example (see more in Joachims 2009):

Class [1]: x1 = [1, –1], x2 = [–1, 1],

Class [2]: x3 = [1, 1], x4 = [–1, –1].

It is illustrated in Figure 8.6.

Fig. 8.6. An example of linearly inseparable sets
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For creation of nonlinear discriminant function we use kernel function in the fol-
lowing form

( ) ( )2
., 1T

i j i jK x x x x= +

The display function ϕ corresponding to the kernel function can be written as fol-
lows

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 21 2 1 2 1 21, 2 , 2 , 2 , , .x x x x x x x
⎡ ⎤

φ = ⎢ ⎥
⎣ ⎦

Further it is necessary to maximize the objective function

( ) ( )2

1 1 1

1
1 max

2

n n n
T

i i j i j i j
i i j

L u u x x
= = =

α = α − α α + →∑ ∑ ∑

with restrictions

1 2 3 40, 0.iα ≥ α + α − α − α =

Let’s rewrite the task in the following form

( )
4

1

1
,

4
T

i
i

L H
=

α = α − α α∑

where [ ]1 2 3 4

9 1 1 1

1 9 1 1
.

1 1 9 1
a d

1 1 9

n

1

T H

− −⎛ ⎞
⎜ ⎟

− −⎜ ⎟α = α α α α = ⎜ ⎟− −⎜ ⎟
⎜ ⎟− −⎝ ⎠

For finding the maximum, we can calculate the partial derivatives with regards to
unknown parameters αi and equate these derivatives to zero. Then, we will find values
of unknown on which the maximum of the objective function is reached.

( )

1 9 1 1 1

1 1 9 1 1
0.

1 1 1 9 1

1 1 1 1 9

d
L

d

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟α = − α =⎜ ⎟ ⎜ ⎟α − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠



296

Solving the system equations, we receive 1 2 3 4 1 2,α = α = α = α =  and

 ( ) ( ) ( ) ( ) ( )( )
4

2 3 4
1

1
0 0 0 2 0 0

4i i i i
i

w u x x x x x
=

⎡ ⎤= α ϕ = ϕ + ϕ − ϕ − ϕ = −⎣ ⎦∑

and, at last, the nonlinear discriminant function can take the following form

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
6

1 2 1 2

1
.2 2 2i i

i

g x w x w x x x x x
=

= ϕ = ϕ = − = −∑

The result is shown in Figure 8.7.

Fig. 8.7. An example of linearly inseparable sets after using the kernel function

In conclusion we give a few examples of the most widespread kernel functions
used for division of classes:

– The polynomial homogeneous kernel ( ) ( ) .,
dT

i j i jK x x x x=

– The polynomial heterogeneous kernel ( ) ( ), .1
dT

i j i jK x x x x= +

– The radial basis function (RBF kernel) ( ) 2 2, exp 2 .i j i jK x x x x⎛ ⎞= − − σ⎜ ⎟⎝ ⎠
– The sigmoid kernel ( ) ( )( ), tanh 1 .T

i j i jK x x x x= +
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9. Visualization of multidimensional data

A person analyzing two-dimensional, or, as a last resort, three-dimensional data,
when working with larger dimensions data may encounter some problems. These days,
the majority of information which demands the analysis, has a significantly big dimen-
sion. So, what to do in such cases? The tools supporting the researchers analyzing the
multidimensional data sets, are data visualization methods, that enable a consolidation
and a reduction of the data dimension which in turns allows to represent them in two
or three-dimensional spaces (see, for example, Mills et al. 2013). This paragraph is
devoted to some of such methods.

9.1. Multidimensional scaling technic

It often happens that the information is presented in the form of a square matrix
that contains distances between the examined objects. At the intersection of i-th row
and j-th column in such a table there is a value specifying difference (or similarity) of
the two objects i, j. This form of presenting information is characteristic for different
researches especially when the similarity or distinction, in some systems of objects or
concepts, is examined.

Thus, initially no coordinate in multidimensional space is combined with the ob-
ject and the presentation of such data in the form of some geometrical interpretation is
rather difficult. The problem of multidimensional scaling (see, for example, Kruskal,
Wish 1978, Gorban et al. 2008) is to design distribution of data in space so that distanc-
es between individual objects correspond to the values from the distance matrix. The
coordinate axes arising in this way can be interpreted as some factors which value de-
fining objects distinction among themselves, like shown in the section 2 the principal
components analysis (PCA). The main goal is to find the map that estimates the origi-
nal distances and tells where the points are located. In that case, we obtain coordinates
pairs corresponding to individual objects and the possibility their visualization in two
or three-dimensional space (see Fig. 9.1).
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Fig. 9.1. An Illustration of multidimensional scaling

In the linear method of multidimensional scaling the method of matching points is
the main component, but it is not applied to the initial matrix of distances. The distanc-
es matrix must be double centered matrix so the averages in the rows and in the columns
of the matrix are zero. Twice centered matrix is unambiguously calculated based on the
initial similarity matrix (there are more options presented in Olshen, Rajaratnam
2010). After that, there is an opportunity to define a dimension of the space providing
exact reproduction of the distance matrix or to define an effective dimension of the
designed space of points which will provide the estimated representation of the dis-
tance matrix of with the given accuracy.

In nonlinear methods the space dimension is set initially, and, by means of gradi-
ent methods the functionality of quality describing the distortion measure of the dis-
tance matrix is optimized.

Going forward, we can formalize the problem of definition. So, let the points
x1, x2, ..., xn of the k-dimensional space be given. Let us denote by δi, j the distance
between two points xi and xj. Let’s find points y1,  y2, ..., yn in the space of smaller dimen-
sion (2 or 3) so that the distance between them can be equal di, j and are put according
to δi, j. It would be desirable to obtain direct compliance di, j = δi, j, but in the case of
transition to the space of smaller dimension it is hardly possible to receive such equal-
ity. But still this problem needs to be solved, and, one of possible methods of finding
the dependence between di, j and δi, j is to minimize the selected objective function.
In such a task it is possible to use minimization of the mean square mistake as follows
(see more in Gorban et al. 2008, 2016)
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The minimization of the objective function is a a difficult task. The gradient de-
scendent method, as it is shown below, can be used to solve it.
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Coordinates of y1, y2, ..., yn points are selected to receive the greatest change.
It is worth noticing that the multivariate data distribution displayed on the plane

does not resolve all issues of input data visualization. The idea to display, on the two-
dimensional card, not only points of data, but also the various information accompany-
ing input data, for example, the location of points in initial space, density of different
subsets, other information about subsets with continuously distributed in the initial
space is absolutely natural. Everything results in the idea of more effective use of all
primary information for displaying both quantitative, and qualitative information.

At last, on the deployment of data to the two-dimensional plane, it would be desir-
able to have the opportunity to arrange, on the two-dimensional plane the data which
did not participate in display setup. It would allow, on the one hand, to use the received
picture for creation of different expert systems and solving problems of pattern recogni-
tion, with the other – to use it for recovery of data with gaps. As a result we come up
with the idea of using an auxiliary object called a map for visualization of data and ex-
traction of information. This object stands for a limited two-dimensional nonlinear rep-
resentation enclosed in multidimensional space of data so that it can serve as a data
model that has the form and the arrangement of such diversity that it has to reflect the
main features of distribution of the data points set.

A simple example of data mapping is the plane of the first two main component. As
it has been already noted above, among all two-dimensional planes enclosed in a space,
the plane of the first two main components serves as an optimum screen on which it is
possible to display the main proper patterns for data. As another, a simpler (but not an
optimum) map it is possible to use any coordinate plane of any two chosen coordinates.

9.2. Kohonen self-organizing maps (SOM)

Our goal, as mentioned above, is to project available data onto a lower dimension
space, maintaining the distance between the available points (objects).

Kohonen maps (see more in Kohonen 1990, 2001, 2013, Kohonen, Somervuo 1998,
Pastunkov, Prokofiev 2016, Penn 2005, Scholarpedia Kohonen network…, Self-organizing
map…) make cartography from the multidimensional entry into the grid of one- or
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two-dimensional nodes with use of ideology of neural networks. Important feature of
this cartography is preservation of topology between input data and neurons into which
they are projected. Kohonen’s self-organizing maps represent a neural network based
on a greedy algorithm which requires no training. It is important to notice that the idea
of SOM is based on the brain functioning. Activation of the neuron by perception of
information leads to excitation of sites in other parts of the brain.

Let’s pass to the detailed statement of ideology of SOM. The neural network archi-
tecture offered by Teuvo Kokhonen (Kohonen 1982) for the automatic clustering (clas-
sification without teacher), is based on ingenious use of information about the relative
position of the neurons forming the grid. The signal reaches such a neural networks
simultaneously on all neurons. The weight of the respective synapses is interpreted
as coordinates of incoming nodes, and, the output signal is created according to the
“the winner takes away everything” principle, i.e. the non zero output signal belongs to
a neuron, that is the next (in sense of scales of synapses) relative to the object given
at the input. In the course of training the synapses weights are adjusted so that nodes of
the grid are located in the places of local condensations of data. In such a way it can
describe a cluster structure of data. On the other hand, communications between
neurons correspond to the neighborhood relations between the corresponding clusters
in the space of data (more details are in Kohonen 1982, 2001, Manukyan et al. 2011).

Initially SOM represents the grid of the nodes connected among themselves by
communications. Kohonen considered two options of nodes connection – with the rect-
angular and hexagonal grid (see Fig. 9.2). In the rectangular grid each node is connect-
ed with four next nodes, and in hexagonal – with six next nodes.

Fig. 9.2. Examples of use of two-dimensional grids of neurons in the Kohonen SOM:
a) neurons in the rectangular grid – each neuron has 4 closest neighbors;
b) neurons in the hexagonal grid – each neuron has 6 closest neighbors

It is important to notice that among the most popular topologies of Kohonen’s
neural networks there can be mentioned two cases shown in Figure 9.3.

a) b)
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Fig. 9.3. One-dimensional Kohonen’s networks:
a) linear layer; b) circular layer

Next two cases shown in Figure 9.4 (see more in Kohonen 2001, 2013).

Fig. 9.4. Two-dimensional Kohonen’s networks:
a) cylindrical layer; b) toroidal layer

9.2.1. Initialization of the map of Kohonen

SOM is the cornerstone referring to the coherent structure of neurons competing
among themselves abort the influence of the signal. The weight wij is delivered to each
neuron in compliance with the number of a scale which is equal to the dimension of the
input signal.

There are several ways of preliminary initialization of the map. It assigns values to
all scale vectors referring to neurons with the weight wij as follows:

1. selection of all coordinates as random numbers;
2. assignment a random sample from input data to the initial vector;
3. selection of vectors from the set of main components (PCA) of input data.

It is necessary to notice that after initialization each neuron does not move on the
map, i.e. the vector of p does not move during the entire training.

a) b)

a) b)
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9.2.2. The training algorithm

The algorithm of training is made by iterations.
Let denote by t an index of an iteration step. Let’s assume that initialization has

a number of iteration 0. Further, the following operations are carried out as follows: We
choose the accidental vector x(t) from the set of input values.

We find a distance to all scale vectors of all neurons on the map. For this operation
some measure can be chosen. Not to mention that the mean square deviation is the
most often used. We look for a neuron which is the closest to the input value x(t)

d(x(t), w(t)νμ) < d(x(t), wij(t)),

where w(t)νμ is the weight of the winner neuron (BMU(best matching unit), Winner)
wνμ(t), wij(t) – the vector of weight, d(x(t), wij(t)) – the certain measure of the distance,
for instance mean square deviation (MSD).

It is important to notice that if several neurons meet the above-stated condition,
then the winner neuron is chosen in a random way (see Fig. 9.5). After that the nodes
begin to move in the space. However, the node does not move alone, but takes
with itself a certain quantity of the next nodes from some vicinity on the map. Let’s
explain it: if the neighborhood radius is equal 1, then together with the node four of
his neighbors are moved on the map, in the case of rectangular grid. For hexagonal
grid 6 neighbors are transferred with the selected node.

Fig. 9.5. Kohonen’s self-organizing map (SOM)
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In the training process of the map two phases are distinguished – the organizing
phase (ordering) and the convergence phase (fine-tuning). At the first phase neighbor-
hoods of great values are chosen, and, the movement of nodes has collective character.
As a result the map “organizes” itself and roughly reflects the structure of data. At the
phase of fine tuning the radius of the vicinity is equal 1–2 and individual weights of
nodes are already adjusted.

It is necessary to mention one more property of the movement nature. Usually it is
adjusted in such a way that among all moving nodes the strongest one is center dislocat-
ed – the next to the point of the data. The others are tested in a way that the smaller
shifts are further from the central node.

Character of the movement is built up by the so-called fading functions of the
neighborhood (neighborhood function). If all neighbors from the environment have
equal shifts, then such a function of the neighborhood is called bubble and for it the
bigger number of movements and less smooth grid is characteristic in the training.

Let’s consider in more detail a definition of the measure of neurons neighborhood
and the change of neurons weight on the map. We choose the neighborhood measure as
the h(t) function. Usually, as the h(t) function the Gaussian function is used (see Fig. 9.6).

Fig. 9.6. Examples of the neighborhood functions: a) Gauss’s function; b) Mexican hat
(rated second differential coefficient of Gauss’s function)
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Let h(t) be Gauss’s function, then “the neighborhood measure” between neurons Mi,j

and Mνμ will take the following form
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where:
0 <α(t) <1 – the training factor monotonously decreasing with each subsequent

iteration (that is defining vector values referring to the winner neu-
ron weight and its neighbors; the larger step, the less clarification is;
t is an index of iteration step),

ri,j, rνμ – coordinates of the Mi,j(t) and Mν,μ (t) nodes on the map,
δ(t) – monotonously decreasing factor regulating the number of neigh-

bors depending on an iteration step.

Parameters α, δ, and their decrease nature, are defined by the expert way.
The easier way to determine the neighborhood function is set as follows:

( ) ( ) ( ),
,, if i ji jh t t M tν μ = α  is in the vicinity of Mν,μ (t) with in advance set radius, and 0 –

otherwise.
The h(t) function is equal α(t) for the winner neuron and decreases with removal

from it.
The following phase is a calculation of the map error. The weights vectors are

changed according to the formula

( ) ( ) ( ) ( ) ( )( ),
, , ,,1 1 .i j i j i ji jm t m t h t x t m tν μ= − + − −

Thus, all nodes which are neighbors of the winner neuron, approach the consid-
ered winner as shown in Figure 9.7.

Fig. 9.7. Scheme of the movement of neurons

At last, the choice of the condition for the stop of map formation process is taken
under consideration.
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For determining the criterion for the stop of the map error, for example, in most
cases we use the arithmetic average distance between observations and vectors of weight
corresponding to the winner neuron is in most cases used. It can be formulated as follows

, ,
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1
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i j i j
i j

x w
N

−∑
where N is a number of input data elements.

The algorithm repeats the certain number of steps. On the first phase the chosen
number of steps is about a thousand, on the second – ten thousand (it is clear that the
number of steps can strongly change depending on tasks).

Let’s note that the offered algorithm does not use any criterion of optimization.
However it is clear that the average distance from each point of data to the closest
node of the card will decrease, at least. The average square of such distance serves as
quality criterion of the constructed map. Usually several tens maps for which receives
the best result according to the mentioned criterion, are under construction.

As a result of the algorithm action the two-dimensional grid of the nodes placed in
multidimensional space (map) is under construction. To represent the input data collo-
cations different types of illustrations are used. For instance it can be the coloring of
the map when color reflects distance between nodes.

In the sections below several examples are given.

9.3. Examples
9.3.1. Showing similarity of objects

Let the random points of the plane be given as it was shown in Figure 9.8.

Fig. 9.8. The random generated points



306

The each point has coordinates which can be used to determine the matrix of dis-
tances between points. The obtained matrix is next randomly disturbed. The matrix is
further used to establish new points in the multidimension scaling procedure. The re-
ceived new points are shown in Figure 9.9.

Fig. 9.9. The random generated blue points; red points are obtained
from multidimension scaling procedure

9.3.2. Showing similarity of European countries

On the basis of Eurostat data, indicators showing the level of social life in Europe-
an countries were selected. The following five indicators were taken into account: em-
ployment rate from 2016 and 2017, gross domestic expenditure on R&B (on the year
2016 and 2017), poverty and exclusion risk indicator (on the year 2016 and 2017), num-
ber of people living in households with very low work intensity of those years and
expenditure on pensions (on 2016 year). In total, the data counted seven variables
from 34 countries. In Figure 9.10, the similarity structure was shown depending on the
choice of the distance measure between selected countries. The data are transform
from seven-dimensional space to two-dimensional space.

It is chosen euclidean, cosine, canberra and mahalanobis distances.
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Fig. 9.10. The similarity of European countries: a) euclidean distance; b) cosine distance;
c) canberra distance; d) mahalanobis distance

a)

b)

c)

d)
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9.3.3. The world map of poverty

On the website (http://www.cis.hut.fi/nnrc/worldmap.html) of Helsinki University
of Technology Laboratory of Computer and Information Science the example of SOM
use for creation of the certain composite economic indicator which is used for coloring
the normal map is given. As a result, the countries with the similar economic situation
are represented on the map by colors with similar shades.

For creating of the map 39 features (indicators) describing different factors of life
quality were considered. Among them it can be listed for example, the health system
level, educational services, quality of the power supply and others. Countries for which
the available values of indicators are similar create clusters that were automatically
coded on the map in corresponding colors. As a result of this process, each country of
the same color description characterizes the same poverty level – from yellow shades
for the safe countries to violet and blue shades for poverty countries as it is shown in
the Figure 9.11.

Fig. 9.11. Distribution of colors on the map of the world poverty

In Figure 9.12 each country is painted in color according to the poverty level. The
countries for which (for the period of the research) the necessary statistics was either
incomplete, or unavailable are painted in gray color.
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Fig. 9.12. The map of the world poverty

9.3.4. The traveling salesman problem

Let’s review one more example Kohonen networks use to solve the traveling sales-
man problem.

The purpose of the traveling salesman problem consists in finding the shortest
route that the salesman moves starting from the one city, passing through all cities
on the map and returning to the initial city. Formally, we have to find the shortest
Hamilton cycle of the nondirectional weighed graph containing in quality of the node –
the city, and the distance between two cities is the weight of the edge connecting the
corresponding nodes. Here we will try to find the approximate solution of this task with
use of self-organizing maps of Kohonen. Input data consist of coordinates (X and Y)
all cities on the sales map. The topology of Kohonen’s network is selected as the circu-
lar layer.

The following three figures (see Fig. 9.13–9.15) show the application of SOM
to the solution of the traveling salesman problem. The initial sales maps is given in
the first figure (Fig. 9.13). On the last figure (Fig. 9.15) the received route of the sales-
man is illustrated. The received way is the shortest among all possible routes connect-
ing all cities on the sales map. Intermediate results are shown in Figure 9.14.
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Fig. 9.13. The sales map

Fig. 9.14. The route of the movement after 100 iterations

Fig. 9.15. Solution of the traveling salesman problem
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10. Recommender systems

The purpose of the recommending system (see, for example, Basu et al. 1998,
Ricci et al. 2011, Resnik, Varian 1997, Schafer et al. 1999) is to create an important
recommendation for users regarding a set of items or products (we will use further the
term subject), which may be of interest them. It can be for instance an offer referring to
books, goods or movies. Developing such recommendations depends on the area and
specific characteristics of the data. For example, the Netflix website provides an oppor-
tunity of rating movies on the scale from 1 to 5 (very bad, bad, average, good, very
good). Such records for data source allow to implement interaction between users and
elements of the online request. Besides, using such attributes as demographic data
and the product description, the system can have access to the specific user and point
in a specific profile. The recommending systems differ in methods of the analysis of the
data sources for a communication research between users and elements which can be
used for identifying well correlated couples the client – the item. Such analysis system
as collaborative filtering (see in Brusilovsky et al. 2007, Cohen, Fan 2000, Collaborative
filtering…, Hill et al. 1995) and content-filtering (see for instance Kuppussamy, Aghila
2011, Marlin 2004, Sawar et al. 2001) on the basis referring to goods or services and
first and foremost to their attributes are a cornerstone of recommending systems.
Besides, there are hybrid methods (see for instance Brusilovsky et al. 2007, Chakrabar-
ti 2004, Marlin 2004, Ricci et al. 2011) which represents an attempt of consolidation
both these designs. The general structure of the recommending system can be shown
a follows (see Fig. 10.1).

Obtaining recommendations from reliable sources is one of the most important
components of natural decision making process. The growing consumption support-
ed by the development of Worldwide Network leads to the fact that more buyers
are offered a wider range of services while sellers face the problem of personalized
advertising campaigns. Recommender systems are evolving to meet the needs of buy-
ers and sellers using the automation of recommendations based on data analysis.
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Fig. 10.1. The general structure of the recommending system

The term “collaborative (joint) filtering” (Chakrabarti 2004) was entered in the
context of the first commercial recommending system which was developed to address
the recommendation of news to a certain circle of users. The motivation assumed
that the user would not receive uninteresting documents. Joint filtering analyzes data
on the use of goods or services items by different users to identify a well-chosen pair:
user – object. According to the filtering methodology that leads to information sourc-
es, search recommendations are not “joint” in the sense that offers presented by users
clearly do not use the information of all users, and focus on attributes of items (goods
or services).

The first methods for the recommendation system were based on simple statistics
of correlation and forecast modeling.

Further research was caused by general availability of data on the Internet, and
interest in the growing popularity of electronic commerce. The surge in interest in
this problem was caused by the Netflix, a company specializing in video and DVD
streaming, has raised interest in this problem providing free access to a large data set
containing 100 million ratings, about half a million users, and several thousand movies
The company announced an open tender for the best algorithm of collaborative filter-
ing (see Fig. 10.2).

Now, the recommendation systems attract the attention of active research from
various fields in which sections of mathematical statistics, machine training, data
mining and so on are crossed. Appendices of methods of the recommendation sys-
tems are performed in different areas, beginning from the web pages recommending
music, books, movies and other consumer goods ending with the interpretation of po-
litical elections.
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Fig. 10.2. Netflix message on the end of a tender

10.1. General structure of recommendation system

The general structure of the recommending system is provided in Figure 10.1.
The known preferences of the user are presented in the matrix form composed of N
users and M items (products, elements, services – see Fig. 10.3) where each cell shows
the rating of the item i connected with the user u.

The matrix of ratings is very rarefied as most of users fills only several points.
Feature is that the sparseness of a matrix is understood as not traditionally mathemat-
ical definition (a large number of a matrix coefficients is equal to zero), and an absence
of any information in most of cells. A problem of recommendatory system is to predict
user’s rating and fill the blank cells.
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Fig. 10.3. A rating matrix rui connecting the user u with an object i

The set of approaches to the recommending systems can be classified as follows:

– Joint or collaborative filtering (CF – Collaborative Filtering): in the CF systems,
it is recommended to assign the user the elements on the basis of the last collective
ratings of all users.

– Content-oriented recommendations (CB – Content Based Recommendation):
these approaches recommend services similar to maintaining services that were
pleasant to the user in the past or that correspond to the pre-defined attributes of
user preferences.

– Hybrid approaches: these methods combine the essence of the given above ap-
proaches.

10.1.1. Collaborative filtering

Joint (collaborating) filtering (CF) system works by implementing the feedback
using the similarity in the rating of behavior among several similar users. In other
words, CF methods are based on proximity of neighbors and models (see in Poncelet
et al. 2008, Rocchio 1971, Cohen, Fan 2000, Ricci et al. 2011, Symeonidis et al. 2006,
Tian, Kwok-Wai Cheung 2003).

Let’s consider simple model of the recommendation system. The proximity of
neighbors is a basis of these methods. The members of the user’s group are extracted
based on their similarity to the active user, and, the weighed combination of their rat-
ings is used for obtaining the user’s predictions.
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Such algorithms are based on the following steps:

1. Arrange the set of weights for all users with similar preferences to the active user.
2. Select k users which have the greatest similar preferences to the active user – the

nearest neighbors.
3. Calculate the forecast from the weighed combination of the chosen neighbors.

In the first step, the weight of wa,u is a similarity measure between the user u and
the active user a. The most often used measure of similarity is the Pearson correlation
coefficient between the ratings of two users

( )( )

( ) ( )

, ,

,
2 2

, ,

,
a i a u i u

i I
a u

a i a u i u
i I i I

r r r r

w
r r r r

∈

∈ ∈

− −

=
− −

∑

∑ ∑

where I is a set of elements evaluated by users, ru,i the rating of the service i by the
user u and ur  is the average assessment of the user u rating.

The second step, was discussed in the section 5.4 where clustering methods were
considered.

The third step, called forecast, as a rule, the predict values pa,i are calculated as the
weighted average deviations from neighbors as follows
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where ar  is the average rating for active user a, ru,i is the rating of service i by the user u,
wa,u – similarity between users a and u, and K – neighbors or the set of users, the closest
to the active user a.

Besides, if we consider the ratings of users as vectors, then it is possible to esti-
mate their similarity based on a cosine of the angle between them
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Let’s notice that empirical research shows that Pearson’s correlation usually
works better. There are also other measures of similarity, including a mean square mis-
take, entropy and so forth.

The choice of an item based on collaborative filtering: With the advent of the
Internet, the use of traditional methods for obtaining data applying to millions of users
and objects, is not effective due to computational complexity. As an alternative,
the scheme of collaborative filtering is dedicated to an element-to-element relations
in which compliance is determined not by similar users, but by rating of similar items.
In practice, this approach leads to more quickly reacting recommendation system and
often leads to improvement of predicting the user behavior.

At such approach, the similarity between couples of items i and j is calculated us-
ing the Pearson correlation
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where U is a great number of all users who estimated both elements i and j, ru,i is the
rating of the element i by the user u, and ir  is the average rating of the element i among
users.

Now, the rating of the element i by the user a can be predicted by means of the
weighed assessment as follows
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where the neighborhood of item i is a set of k elements that are the closest to i due to a.

Let’s notice that at measurement of similarity among users, elements which were
evaluated by all rating marks (from 1 to 5), are not so useful as less widespread ele-
ments. To consider this fact we use a concept of the user return frequency which is
calculated as follows ( )log ,i if n n=  where ni is the number of users who evaluated an
element i from total number of n users. To apply the user return frequency while using
the similarity based on CF, the original rating of i is multiplied by fi. The basis of this
approach is that elements which are good and very good, are estimated more often
than others.
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In the case of big arrays of users and items, outstanding performance was shown
by the latent models and factorization of matrix models. Unlike the methods based on
localization of close neighbors who generates recommendations on statistical concepts
of similarity among users or among elements, the latent factor models are based on
that the similarity between users and items is induced by some hidden data structures
of smaller dimension. For example, the rating which the user gives to the movie, most
likely, depends on several implicit factors, such as the user taste, the user favorite
actors or favorite directors of the movie, etc. Matrix factorization is called the class
of successful CF models with the hidden factors where users and items are presented
in the form of unknown vector functions (vector columns) , k

u iw h ∈ℜ  in k hidden
dimensions. The result of the product T

u iw h  is an approximation of a matrix relating to
the known ratings ru,i. To find the wu, hi the least-squares method is traditionally used
as follows
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where W = [w1 ... wn]T is a searched matrix of the size n × k, H = [h1 ... hm] is a searched
matrix of size k × n, and the set of couples user – element for which ratings ru,i are
known is L. In a trivial case when all ratings of couples user – element are known, the
objective function takes a form

( ) 2
fro,J W H R WH= −

where R designates n × m matrix of completely known couples user – item and fro• –
Frobenius’s norm defined as follows ( )fro tr .TA A A=  Thus finding the minimum of
this task is given by singular value decomposition (Singular Value Decomposition –
SVD; see more for instance in Sawar et al. 2000). However, in practice, when the ma-
jority of items ratings by the user is unknown, a global optimal solution cannot be
received in an explicit form. Therefore optimization of not convex objective function
of J(W, H) is required. In this case the objective function is represented by a special
form of the weighed losses, i.e.

( ) ( ) 2
fro

,,J W H S R WH= ⊗ −

where ⊗ designates the element-by-element product, and S is a binary matrix with
the coefficients equal to one for the known couple user – element of L, and to zero
otherwise. The standard decision assumes the use of gradient methods or procedures,
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similar to iterative modification of the least-squares method when H is estimated at the
fixed W, and, on the contrary, when W is estimated at fixed H until the criterion of
convergence is reached. Similar approach was considered in the section 1.2 devoted
to the least-squares method.

After estimating W and H, their product WH provides the buyer with a recovery
rating matrix from which recommendations can be evaluated directly.

Different choice of objective function, regularizations and additional restrictions
of models evoke a great interest in matrix factorization methods. It can be claimed that
for discrete ratings, the square of errors is not the most natural method.

Another class of methods uses matrix factorization with restriction of nonnegativ-
ity imposed on W and H. The rating of each user behavior can be considered, by means
of manifestation different roles, for example, by presence at groups of the users con-
nected by interests or communication that leads to the objective function as follows
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The prize of one million dollars was offered by the Netflix for a team which would
improve the movie recommendations for users. The one of used methods was the ma-
trix factorization. The final victory was brought by different complex models which are
part of several improvements to the main matrix factorization model. Some of them
are listed below:

1. Checking additional specific users and specific services to clarify systematic errors
in ratings, for example, taking advantages of the fact that popular videos are highly
appreciated on the average.

2. Using the temporary dynamic of rating
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, ,ˆ T
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∈

= − − −∑

where t designates counting of time, and W includes time-dependent dimension of
user space.

In many cases, like ratings from 1 to 5 “very bad – very good”, only implicit prefer-
ences are available. For example, in such data the records of transactions containing
information on products purchased by clients or navigation of the client on the seller’s
website are collected. This information can be used for forming negative examples that
will allow not to offer clients any service or goods which they do not need. It is difficult
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to collect and support such information, taking into account quickly changing business
environment. The method of matrix factorization can be used for the solution of such
problems if the entering weight cu,i characterizing trust degree can accept negative values
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Mix of the hidden profiles. Let { } 1
M

m mY y ==  be a set of items and { } 1
N

n nU u ==  be
a great number of the registered users. The rating matrix R has N×M dimensions.

The rating established by the user un for item ym is designated rn,m. Observed ratings
are kept in the list ( ){ } 1

, , .
L

i i
D u y r

=
=  Let’s notice that not all elements have ratings

from all user. Let’s describe a probabilistic mixed model of the hidden profiles. The
idea is present an assessment of user behavior in a simple generation model. Let’s con-
sider two versions of probabilistic approach. The first assumes that there are user groups
with essentially the same behavioral rating. The second model allows each user to have
an own rating profile, but this profile is presented in the mixed form of several typical
profiles of ratings. Let’s notice that the rating of a profile is defined by distribution
of ratings on a full range of items, on the basis P(r, y|θ), where r = (r1, r2, …, rM)T and
y = ( y1, y2, …, yM)T with value ym=1 if the element m received the rating (rm ≠ ∅)
and ym = 0 in the case when the item m did not receive the rating (rm = ∅). When
forecasting rating it is usually known on what element it is necessary to do the forecast
and thus it is enough to define conditional probability of rating the profile P(r|y; θ),
considering that distribution is parametrized by θ (see more in Lim, Teh 2007).

In the beginning we will consider the rating constructed on binary information –
whether there was an interaction between the user un and element ym or not. In this
case the rating of a profile is defined through P(y|θ) the probability of receiving
(according to the available information) rating for each element. In this case, using
Bernoulli’s distribution, we receive

( )1( .| ) 1 mm yy
m m

m
P y −θ = β − β∏

Set of parameters ( )1, .. 0 1a., ndT
M mθ ≡ β β ≤ β ≤  defines probability of interac-

tion between the user and the ym.
An alternative to Bernoulli distribution is multinomial distribution. In this

case there is an additional restriction between parameters: ( )1, ..., T
Mθ ≡ β = β β  under
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a condition 1 and 0.m mm
β = β ≥∑  Then the probability of the profile can be de-

fined as follows

1
( | ) ( | , ) ! ! ,m

m

y
m m

ym

P y Mn y V V V
=

θ ∝ β = β = β∏ ∏

where mm
V y= ∑  is a number of elements having the rating, Mn is a multinomial distri-

bution. It is interesting that, for multinomial distribution, the unrated elements do not
make a direct contribution to probability. It makes the process of probability calcula-
tion much more quicker and more effective on big rating matrices. The proportionality
mark μ shows that the following restrictions { }0, 1my ∈  should be taken into account
when carrying out normalization. Let’s notice that this factor does not influence the
optimization of parameters.

In more general case the multinomial distribution is suitable for the ratings repre-
sented by integer numbers { }0, 1, 2, ... .r ∈  As in the previous case, we have

( | ) | , .m
m

P r Mn r r
⎛ ⎞

θ = β⎜ ⎟⎜ ⎟⎝ ⎠
∑

The vector which has not been rated is absent in this expression as the information
on the absent ratings is already coded in r.

The principle of determining the profile rating remains the same for explicit rat-
ings i.e. when ratings are coded taking into account users rewiews. Explicit ratings can
accept discrete values { }max1, 2, ...,∈r r  or continuous values [ ]min max,r r r∈  in an or-
dered set. We can associate the absent values of rating with .r = ∅  At first let’s consider
a simple case when only conditional distribution of rating is required ( | ; ).P r y θ  It
would be possible to define a profile, receiving ratings, for example, from Gaussian
distributions. So, using the parametrization ( ){ } 1

,
M

m m m=θ ≡ μ σ  we receive the proba-
bility of a profile as follows

1
( | ; ) ( | , ),

m

m m m
y

P r y N r
=

θ = μ σ∏

where the product is calculated only on the basis of a set of observed ratings. In prac-
tice, ratings are always forced to accept values from a limited interval, and, then it
makes sense to use limited distributions such as the theta distribution, which has two
parameters. Besides, if ratings can be chosen from discrete set, binomial distribution
or multinomial distribution would be more natural than Gaussian distribution.
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Now, taking into account the scheme of forecasting, i.e. information ( | ; ),P r y θ
it is possible to combine implicit and explicit ratings in a profile. Standard approach
is the combination of a multinomial distribution for the missing information
and Gaussian distributions for the available values of rating. Therefore, we have

( ){ }, ,m m mθ ≡ β μ σ  and probability of a profile as follows

( ){ }( )
1

( | ; ) | ; , ( | ) ( | , ).
m

m m m m m m
y

P r y P r y P y N r
=

θ = μ σ β ∝ β μ σ∏

Let’s notice that if the purpose is only to predict the rating couples user item, i.e.
to determine a good evaluation of P(r|u, y), then taking the lack of ratings in model
into account will not probably be an advantage.

The clustering hidden profile. The idea of the clustering hidden profile is that
each user is given one rating profile from the set of typical profiles. Let’s assume
that there are K models of rating profiles. Each profile has its own parametrization,
therefore, the full range of profiles parameters is { } 1.K

k k=θ ≡ θ  The user u is given
a vector of indexes z = [z1, ..., zK] and zk = 1 if the user corresponds to k-th profile and
zk = 0 otherwise. Then the probability that the user corresponds to k-th profile can be
written as follows

( , | ; , ) ( , ) .| kz
k

k

P r y u z P r yθ = θ∏

10.1.2. The content-oriented recommendations

Collaborative filtering recommendations use only user ratings that are not likely
to obtain any forecasts without specifying of certain users or items. However, it is pos-
sible to make more personalized recommendations, knowing more about the user,
for example, having demographic customer information or information about kind of
films the client prefers. The content based (CB) recommendations belong to the ap-
proaches that predict a customer behavior by analyzing content referring to the item
(service, element) description taking into account the interests of users.

The scheme below (see Fig. 10.4) reflects the general principles of content filtering.
Numerous studies in this area are concentrated on finding the recommendations

for goods or services with a relevant text content, for example, on the web pages of
goods or services containing users descriptions and responses (see more in Kuppussamy,
Aghila 2011, Marlin 2004, Sarwar et al. 2000, 2001). Thus, it is possible to treat this
problem, as a problem of information search. It is possible to treat the task connected
with the user preferences as a query, and to correlate the rating of the text with the
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relevance of the request (for more details see in Yang 1999, Yang, Pedersen 1997,
Yang, Xin Liu 1999). Then the documents in each rating category are given the vectors
of TF-IDF (term frequency, inverse document frequency – see in section 6.2 devoted
to qualifiers). Then averaging is carried out which allows a vector prototype to be re-
ceived for each category of users. To classify a new document the corresponding vector
is compared with a prototype of each category. The prediction of rating is based on
a cosine value of the angle between these vectors.

Fig. 10.4. The general scheme of content-filtering

An alternative to the approaches based on information search is using of stochas-
tic models, for example, naive Bayesian classification, creation of a decision tree, neu-
ral networks and so forth.

10.1.3. Profiles of users

The profile of user interests is used in the majority of recommendatory systems.
This profile can consist of different information types. We will concentrate on two
information types:

1. Model of the user settings, i.e. the description of elements types representing
interests of users. There are many possible alternative suggestions for this descrip-
tion, but the general rule is the availability of a function which for any element
predicts probability as far as the user is interested in this item (service). To make
recommendations more effective, this function can be used for receiving n ele-
ments which are most likely of interest to the user.
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2. Stories of the user interaction with system recommendations. It can include stor-
age of elements which the user looked through together with other information
about the client actions (for example, that the user purchased the items specified
by the other client). History of the requests entered by the user can be one more
information.

In the user settings, the system of the recommendation provides the interface
which allows users to construct an idea of his interests. For this purpose tags are often
used that allows the user to choose one or another known value of attributes, for exam-
ple, to choose favorite sections of news, or a movie genre. In other cases, the HTML
form allows the user to enter words, for example, a name of the musician or author
which are interesting to the user. As soon as the user enter this information into the
database, the process of search uses them for finding elements which answer the crite-
ria determined for the client and displays them to the user. At the same time there are
several restrictions of the system in the user settings. First, they demand some effort
from the user, and it is impossible to expect a large number of users who will do this
work. Secondly, settings of the system do not provide a method of determination of
a sequence (rating) of elements.

The recommendation system based on history of the user actions should have the
rules of recommending other products. For example, the system may contain the rule
which recommends continuation of a book or a movie to clients who have already
purchased the book or the movie from this series. Other rule can recommend a new
compact disk for users who purchased disks of this contractor earlier. In some situa-
tions it is reasonable to recommend goods to the user if he purchased it earlier and in
other situations, it is not. For instance, the system should offer fixed elements that are
easily worn such as edges of the razor or a cartridge, and additionally at the same time
recommend a mobile phone or Webcam.

10.1.4. Training a user model

Creating the behavior model of the client based on the user history is one of forms
of the recommendation systems education. Let’s consider classification of training
algorithms. Such algorithms are a key component of creating recommendations sys-
tems. As it was already noted above, the algorithm of training includes function which
provides assessment of probability that the user will pay for goods (items, service). This
probability can be used for sorting the list of recommendations. Traditional algorithms
of machine training are intended for work on structured data. When working with doc-
uments, the text at first are transformed into structured data, using a small subset of
terms as attributes. Let’s look at the overview of several most popular algorithms.
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1. Decision tree

The decision tree uses recursively sectioned data on which it is trained. In case of
using texts the documents are divided consistently into subgroups before formation
of such subgroups that contain only one copies class. As a rule, as selection criterion an
availability or a lack of the characteristic word or phrase is used. Decision trees are
well studied when using structured data (see more in section 6.4). Enriching know-
ledge on decision tree can be found for example in (Ghazanfar, Prügel-Bennet 2010
Kohavi 1996, Naive Bayes…, Baldvin, Xie 2005, Olaru, Wehenkel 2003, Rokach, Maimon
2014, Smith 2002).

2. Behavior of the nearest neighbor

The algorithm of the nearest neighbor just stores all stages and levels of data
training. To classify the new, not marked point, the algorithm compares them to all
kept elements and, using similarity, defines “the nearest neighbor” and consolidates
recommendations with actions of the nearest neighbors. Usage of an algorithm of
the nearest neighbor depends on a data type. Quite often this algorithm is used
for structured data with the Euclidean metric, or for vector model with the similarity
criterion given by the cosine of the angle between the vectors. The effectiveness of
this algorithm for comparing texts referring to one topic is sufficient. This approach
is often used for personalization of news. It might be much recommendable to
dive in (Ricci et al. 2011, Pedregosa et al. 2011, Perkins 2014, Richert, Coelho 2013,
Sammut, Webb 2017).

3. Relevant compliance and Rocchio algorithm

As with the vector space model, success in document search depends on user’s
ability to create requests, select a set of keywords, as well as methods that help users
determine progressive requests based on previous search results. The right document
search is the focus of many studies. These method are usually called the feedback
(the relevant compliance). The Rocchio algorithm (Rocchio 1971) is a widely used
feedback algorithm. The algorithm is based on modification of the request through the
weighed prototypes of the relevant and not relevant documents. This approach creates
two prototypes of the document. The first prototype relates to all corresponding docu-
ments and the second relies on non-compliance with the documents. This is formaliz-
ed as follows

1
rel nonrel

.i i
i i

i i

D D
Q Q

D D+ = α + β − γ∑ ∑
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Here Qi is a user request for iterations of i and α, β, γ are parameters which con-
trol influence of the initial request and two prototypes on change in result of the
request. The main idea is to gradually move the request vector towards clusters of
relevant documents and far from irrelevant documents.

4. Linear qualifiers

As it was mentioned above (see the section 6.5 devoted discriminant analysis) the
algorithms, based on the linear borders i.e. the hyperplanes dividing sets of decisions
in multidimensional space are called linear qualifiers. There is a large number of algo-
rithms which get to this category, and many of them are successfully applied in the task
of text classification. The reader can go into greater details in for instance (Backer,
Mc Callumn 1998, Pedregosa et al. 2011, Sammut, Webb 2017).

5. Probabilistic methods and naive Bayesian qualifier

Unlike the vector model, which does not have a sufficient theoretical justification,
probabilistic approaches of classification in the basis have a good theoretical explana-
tion. At the moment the naive Bayesian classifier (see the section 6.4 devoted to classi-
fier) is recognized as exceptionally well working algorithm of text classification.

So, we need to find the most probable hypothesis h∈ H on the condition of avail-
ability of data D, meaning that it is necessary to maximize P(h|D). To achieve it we can
use the Bayes theorem (6.1)
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Let’s compare different options of the simplified Bayes algorithm – multinomial
model and Bernoulli’s model. Both models are based on the assumption that textual
records generate the probability model described by mixture

1
( | ) ( | ) ( | ; ).

C

i i i j
j

P d P c P d c
=

θ = θ θ∑

Here, to each class ci there corresponds the mix component which will be parame-
trized by subsets not crossed with θ. As soon as the parameters θ̂  from the training
data are received, the probability of a posteriori belonging of the test text document to
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a class can be defined using Bayes’ theorem as follows
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The multidimensional Bernoulli model and multinomial model differ in a method
of determining the value ( | ; ).i jP d c θ

Let { } 1
V

t tV w ==  be a dictionary. Then the document di is a vector of length |V|, Bi

consist of bits, Bi,t = 1 if the word wt occurs in the document di, otherwise Bi,t =0.
The multidimensional formulation of Bernoulli distribution for problems refer-

ring to the text classification assumes that each document is presented in the form of
a binary vector over the space of all words from the dictionary V. For each element Bi,t

this vector specifies whether the word appears in the document at least once. Follow-
ing naive Bayes theory, the probability of each word entering the document does not
depend on other words. Consequently it is possible to present it in the following form
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For training of such classifier it is necessary to calculate probabilities ( | ; ).t jP w c θ
Let the following elements be given: a set of documents { } 1

D
i iD d ==  which are already

placed within the class cj, the dictionary { } ,1 and bitsV
t i ttV w B==  (we know docu-

ments).
Then you can calculate the optimal probabilities of estimates ( | ; )t jP w c θ  taking

into account that one or the other word meets in this or another class (Laplacian
smoothing)
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The prior probabilities of classes can be calculated as follows
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And classification can take such a form
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Unlike binary submission of the document multidimensional model of Bernoulli,
the multinomial formulation considers the frequency of word loss. This model assumes
that documents are generated by the sequence of independent tests with multinomial
distribution of probabilities. Let there be given a set of documents { } 1,D

i iD d ==  which
are already distributed within the class cj, the dictionary { } ,1 andV

t i ttV w N==  the num-
ber of word occurrence wt in the document di. Besides, naive Bayes allows to define

( | ; )i jP d c θ  based on probabilities of a meeting separate words

( ) ,

1

( | ; ) ( .| ; )
i

i t

d
N

i j i t j
t

P d c P d P w c
=

θ = θ∏

At the same time, the probability ( | ; )t jP w c θ  can be estimated as follows
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The prior probabilities of classes can be calculate in the following way
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Then the classification takes the following form
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Experience shows that the simplified Bayes algorithm with multinomial distribu-
tion is more effective than this algorithm with multidimensional Bernoulli distribution.

The reader is welcome to dive in (Ghazanfar, Prügel-Benet 2010, Naive Bayes...,
Sebastiani 2002, Ricci et al. 2011, Pedregosa et al. 2011).

10.1.5. Hybrid approaches

To use strengths of both approaches and to receive more effective recommen-
dation system, it is necessary to use hybrid approaches (see for example (Ghazanfar,
Prügel-Benet 2010)). One naive approach consists that on the basis of the content and
joint methods of filtering separate lists of recommendations are formed, and then
those lists are combined to receive the final weighted consolidation of two forecasts
where weight increases with the number of the users choosing the element.

The interesting idea is transformation of disperse matrices of user ratings to
the filled matrices, and then, using the CF methods, obtaining recommendations.
In particular, it is possible to use the naive Bayesian qualifier for training on the
documents describing the rating of each user and for filling the missing ratings. As
a result we receive a matrix of pseudo-ratings, using which, we find the neighbors
similar to the active user, and we receive forecasts by means of Pearson’s correlation.
There are other hybrid approaches based on joint filtering, but also supporting a pro-
file of each user.

The quality of the recommendation system can be estimated by comparison of the
recommendation for a test set of the known ratings of users (see Herlocker et al. 2004).
The most often used metrics is the mean absolute error (Mean Absolute Error – MAE).
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It is defined as the average absolute difference between predicted and actual ratings
and can takes the following form

, ,
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MAE ,

u i u i
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where pu,i is the predicted rating of an element i by the user u on, ru,i is the actual rating,
and N is the total quantity of the ratings received during testing.

Another, traditionally used metrics, is root mean square deviation (RMSE-Root
Mean Squared Error) which places the bigger emphasis on big absolute error, and can
be determined by the following formula
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Usages of these metrics leads to considering all elements equally. However, for
the majority of the recommendation systems, the main task is to predict the user be-
havior as accurately as possible. In the context of information search systems (ISS –
Information Search System), the identified item against the bad elements in the back-
ground can be considered as distinction between the “corresponding” and “important”
elements. Here other criteria ca be used as a test of accuracy, for example, a F-measure
of the balanced mistake, τ – Kendall’s correlation and so on.

Let’s note several problems.
Innovations and new users create a serious problem for the recommendation sys-

tem. In total these problems are called a problem of “cold start”. The first of them
arises in the system of joint filtering when service cannot be recommended until a user
estimates it. It concerns not only innovations, but also the existing services that are
especially harmful for users with special (exotic) tastes. In general it is difficult to solve
a problem of new users because without any information about the user preferences it
is not possible to find similar users or to construct his profile.

Other problem is the fraud. As soon as the recommending systems of commercial
websites began to play a significant role in impact on profitability. It led to participa-
tion of unfair suppliers in different forms of fraud with the purpose to get some advan-
tage of using the recommendation systems. As a rule, they try to inflate popularity
of own products (push attack – increase the prediction value of a target element) or to
downgrade the competitors (nuke attack – decrease the prediction value of a target
element). Such attacks usually provide creation of dummy profiles, and use informa-
tion on system operation.
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The good example of using mentioned method is the work by (Ghazanfar, Prügel-
-Benet 2010).

10.2. Analysis of client environments

The client environment is a set of clients (users, subjects) who are regularly using
the fixed set of services (goods, resources, objects, items, services). It is supposed that
actions of clients are recorded in electronic form. Examples of actions can be: using
service or purchasing goods, estimating (rating) service or goods, making requests for
information, fee, the choice of a tariff plan, participation in a marketing event, receiv-
ing a bonus from the company, refusing service, etc.

The analysis of client environments (Customer Environment Analysis – CEA) is
the technology of processing client action protocols allowing to calculate effectively
mutually approved estimating similarity of clients and services. It can be used for solv-
ing such business challenges as automating marketing research, forming the directed
offers to clients, personalizing services, increasing satisfaction and customer loyalty,
more effective attraction and customer retention.

The CEA technology can be used for creating the recommendation systems, per-
sonalization of offers (targeting, direct marketing) and creating customer relationship
management systems (Customer Relationship Management – CRM).

Directions, closest to CEA, are collaborative filtering (Collaborative Filtering –
CF) and the correspondence analysis (Correspondence Analysis – CA). CEA has two
main differences relating to CF:

– CEA is aimed at receiving mutually approved estimating similarity of clients and
services. Clients and services are considered as equal, dual entities. Any analysis
made concerning clients can be reflected in services and vice versa. Methods of
collaborative filtering, especially simple, do not allow such duality.

– CEA considers all complex of the tasks and methods connected with further use
of the received similarity estimates for visualizing, clustering, classifying and fore-
casting of customer behavior and finally with solving the listed above business
challenges. Works on collaborative filtering are in most cases limited to narrow
problem definitions like predicting ratings or forming recommendations.
Below we present some examples of using the CEA.

10.2.1. Examples of client environments

Client environments arise in the most different spheres of business, and not only
business. It is possible to speak about client circles of item producers, dealer networks,



331

networks of supermarkets, telecom operators, plastic card issuers, libraries, online
stores, search engines, social networks, forums, blogs etc.

Also such appendices CEA in which the terms “clients” and “services” are hardly
applicable, for example the analysis of texts or the analysis of parliamentary elect-
ion results are possible. However mathematical methods of data handling remain
the same.

10.2.2. Retail chain stores

Let’s denote that “services” are goods (items), “clients” are the regular customers
having the discount card and “actions of clients” are purchases of goods (items).

It can be listed some examples of tasks:

– Make the client a directed proposal of those goods (items) which with a high prob-
ability will be pleasant to him. The personal offer can be printed on a reverse side
of the bill or be moved on the special terminal at the request of the client.

– Just in time let to the client know where there are new goods (items) about which
still very few people know, but which with a high probability will interest this client.

10.2.3. Mobile operators

Let’s assume that “services” are different services (types of connections), “clients”
are subscribers of network and “actions of clients” are the calls of different types
(entering, outgoing, long-distance, international, the SMS, MMS, etc.), but also pay-
ments, connections and shutdowns of services, changes of tariff plans, appeals to the
service center etc.

In this case there can be some examples of such tasks:

– Forecasting clients resignation (churn prediction), on the basis of similarity to
already quitting clients.

– Segmentation of client base and allocation of target client groups.
– Identification of similar services when forming package offers.
– Detection of unusual or potentially dangerous customer behavior (fraud detec-

tion).

10.2.4. Online stores of books, audio and video of other products

The assumption in this case are as follows: “services” are goods (items – books,
disks, movies, etc.), “clients” are regular customers and actions of clients are either
purchases of goods (items), or assessments (ratings) of goods.
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Examples of tasks can take the following form:

– Predict the ratings of goods (items) for the user and offer the customer the list of
the most interesting goods (items).

– Offer a personal discount for joint purchase of several goods (items) (cross-
-selling).

– Just in time inform the client about new interesting to the customer goods (item)
(up-selling).

10.2.5. Search engines

Let’s define that “services” are the pages or documents offered as search results,
“clients” are users of the search engine. “Actions of clients” are transitions from the
page of search results to the found document. In this appendix the CEA technology
adjoins the analysis of a web (web mining), more precisely, to the analysis of the web
user behavior (web usage mining).

Examples of tasks:

– Range search results in such order that the documents high on the list are the ones
with high probability interesting to the user.

– Place targeted advertising on the page, suggesting the user to visit the websites,
with a high probability interesting to the customer, exactly at present.

– Find for the website the list of the closest websites (for example, for automatic
generating the page of useful links).

– Find for the website a list of the websites, the closest to the searched one (for
automatic generating the personalized list of the recommended references).

10.2.6. Parliamentary elections

Here as “services” we define political parties acts, “clients” are territorial subjects
of the federation, territorial constituencies or polling precincts. “Actions of the client”
are the votes given to the parties.

Tasks are connected generally with interpretation of election results:

– Make a ranking of political parties based on similarity concerning any set party.
– Make a ranking of regions based on similarity concerning any set region.
– Understand and visualize (for example, by means of the card of similarity) a polit-

ical range of parties.
– Allocate votes to similar political parties.
– Allocate votes to regions in which this political party could draw votes for other

parties.
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10.2.7. Analysis of texts

In this case “services” are keywords or expressions, “clients” are texts. “Action of
the client” corresponds to the fact that this keyword occurs in this text.

Examples of tasks:

– Automatic classifying and clustering large volumes of textual records or news
flows.

– Document retrieval based on the similarity to the document.
– Search of the most complete and relevant documents on a specific subject.

10.2.8. Social networks

In the elementary case, “services” are pages (blog entries, personal pages of users,
sections of a forum), “clients” are users of social service. Actions of the client are:
visiting the webpage, viewing messages, creating own messages, adding/removing
friends, etc. Social networks are more difficult example of the customer environment
analysis as it is necessary to apply the analysis of text information. Generally there are
not two types of the interconnected entities (clients and services), or three types: users,
pages and keywords.

Examples of tasks:

– Personal offer of webpages, forums, contacts, interesting to the user.
– The automatic personalized classifying and clustering webpages, forums, contacts.
– Search of adherents (like-minded people), similar people (neighbors).
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Appendix

Basic information

A.1. Background information on linear algebra

Improving basic knowledge on linear algebra and probability theory will be much-
needed for having a better grasp of next sections. Without getting into details, in this
paragraph we will provide necessary information relating to the subsequent sections.

Let’s remind that for the matrix A the n × m size we understand replacement of
rows with columns with the same numbers as transposing, in particular, if

1,1 1,2

2,1 2,2

3,1 3,2

4,1 4,2

,

x x

x x
X

x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

that

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2
.T x x x x

X
x x x x

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

The important characteristic used further is the scalar product (dot product) of
two vectors

1 1 2 2
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, .. ,.
n

T
n n i i
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= = + + + = ∑
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⎢ ⎥
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On the other hand, noticing that , cos ,X Y X Y= θ  where θ is the angle be-
tween vectors X and Y, we derivate cosθ as

cos .
TX Y

X Y
θ =

Thus, the dot product (scalar) characterizes the deviation of the vector X from the
vector Y. The Euclidean metrics or length of the vector is defined as the number

2

1
, ,

n

i
i

X X X x
=

= = ∑

and Euclidian distance between two vectors we will call number

( )2

1
.

n

i i
i

X Y x y
=

− = −∑

Vectors X1, X2, …, Xm are called linearly independent if equality

1 1 2 2 ... 0,m mX X Xα + α + + α =

then and only then when all αi = 0, i = 1, 2, …, m.
If this condition is satisfied but at least at one αi ≠ 0, then the system of vectors is

linearly dependent.
The set of all m-dimension linearly independent vectors generate the vector

space V of the same dimension.
The set of vectors {U1, U2, …, Um} is called a basis of the vector space V if for

∀v ∈ V there will be such set { } 1,m
i i=α  that

1 1 2 2 ... .m mv U U U= α + α + + α

Basis {U1, U2, …, Um} is orthogonal if i jU U⊥  for ∀i ≠ j (i.e. , 0)i jU U =  and if at
the same time |Ui|= 1, i = 1, ..., m, the basis is orthonormal.

If for the square matrix A the size m � m there will exist the nonzero vector of the X
such that the condition is satisfied AX = λX, that X is the eigenvector of the matrix A
and the number λ is called the matrix eigenvalue. Thus, the linear transformation
realized by the matrix A, transfers the eigenvector of X in colinear, sent to the same
party if λ > 0, and to the return if λ < 0.
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Let’s note several important properties of eigenvalues.

– If the matrix A is valid and symmetric (that is AT = A), all eigenvalues are valid.
– If the matrix A is not singular (that is its rank is equal to number of rows), then its

eigenvalues will be not zero.
– If the matrix A is positively defined (that is XTAX > 0), all its eigenvalues are

positive.

In order to have more detailed understanding of using linear algebra, the reader
should get familiarized within (Press et al. 2007, Rao, Toutenburg 1999).

A.2. Background information on probability theory

Let Ω be the set of all possible outcomes of some events, and S – event algebra, set
of subsets of the set Ω, for which the following conditions are satisfied:

1. S includes impossible and reliable events.
2. If events A1, A2, … (the finite or countable set) belongs to S, that S possesses the

union, the intersection and the subtraction of these events.

Probability function P(A) is defined on S, accepting real values from zero to one
and satisfying axioms:

– Nonnegativity axiom: ∀A ∈ S; P(A) ≥ 0.
– Normalization axiom: the probability of the certain event is equal to unit: P(Ω) = 1.
– Additivity axiom: the probability of the union of disjoint events is equal to the sum

of probabilities of these events: if ( ),i jA A i j= ∅ ≠∩  that

( ).k k
kk

P A P A
⎛ ⎞

=⎜ ⎟
⎝ ⎠

∑�

Let’s give the basis properties of probability.

1. ( ) 0;P ∅ =

2. ( ) 1;P A ≤

3. ( ) ( );A B P A P B⊂ ⇒ <

4. ( ) ( ) ( ) ( ).P A B P A P B P A B∪ = + − ∩

The probability of the event A provided that there was given the event B, is called
conditional probability P(A|B). It is calculated as follows

( )
( )

( | ) .
P A B

P A B
P B

∩
=



337

If events A and B are independent, then ( ) ( ) ( ),P A B P A P B∩ =  and for condi-
tional probability it is possible to obtain

( )
( )

( ) ( )
( ) ( )( | ) .

P A B P A P B
P A B P A

P B P B
∩

= = =

Let

( ) ( ) ( ) ( )1 2 3 ... ,nA A B A B A B A B= ∩ ∪ ∩ ∪ ∩ ∪ ∪ ∩

then from the formula of conditional probability we receive the following equa-
tion (A.1) (see Fig. A.1)

( ) ( ) ( ) ( )1 1 2 2( | ) ( | ) ... ( | )n nP A P A B P B P A B P B P A B P B= + + + (A.1)

that is

( ) ( )
1

( | ) .
n

k k
k

P A P A B P B
=

= ∑

Fig. A.1. Illustration of the composite probability formula

The important role in further reasonings is played by Bayes formula or the theo-
rem of hypotheses. This statement allows to reevaluate the probability of hypo-
theses Bi, accepted before experience (event) and called by the priori (a priori – before
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experience) by results of already made experiment, that is using a posteriori (a posteri-
ori – after experience) probabilities. If B1, B2, …, Bn are the making sets of S, then
probability that the event A will lead to the event Bi is equal

( )
( )

( )

( )
1

( | )
( | ) .

( | )

i i i
i n

k k
k

P B A P A B P B
P B A

P A
P A B P B

=

∩
= =

∑

Random variable (random quantity) X is called the function defined on the set
of events Ω, which relates each simple event ω to the corresponding number X(ω).
The random variable can be discrete and continuous.

Any rule allowing to find probabilities of any events A ⊆ S, is called the distribu-
tion function of the random variable, and at the same time say that the random vari-
able submits to this distribution.

Distribution function of the random variable X is a function F(x), which relates for
any x ∈ R to the probability of the event {X ≤ x}

( ) { }( ).F x P X x= ≤

Distribution function has the following properties

1. ( )0 1.F x≤ ≤

2.  F(x) is non-decreasing function, i.e. if x2 ≤ x1 then F(x1) ≤ F(x2).

3. ( ) ( )0, 1.F F−∞ = +∞ =

4. { }( ) ( ) ( ).P a X b F b F a< ≤ = −

For the discrete random variable X let

( ) ( ),p x P X x= =

then

( ) ( ) ( ) ( ).
a x a x

F x P X x P X x p x
≤ ≤

= ≤ = = =∑ ∑
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For the continuous random variable the function f(x) ≥ 0 is called probability den-
sity function if

( ) ( ) ( ) .
a

F a P X a f x dx
−∞

= ≤ = ∫

Hence

( )( ) .
b

a

P a x b f x dx< ≤ = ∫

Furthermore

( ) ( ),
d

F x f x
dx

=

besides

( ) ( ) ( ) ( )0 and 1.
a

a

P x a f x dx P x f x dx
∞

−∞

= = = −∞ ≤ ≤ ∞ = =∫ ∫

Let’s consider some important characteristics of the random variable. The first
moment of the random variable is called the average value. For the discrete case the
average has the appearance

( ) ( ),
x

E X xp xμ = = ∑

for the continuous case

( ) ( ) .E X xf x dx
∞

−∞

μ = = ∫

The quantity

( ) ( )( )22 var X E X E Xσ = = −

is called the variation or dispersion. This number characterizes dispersion of the ran-
dom variable, and σ is called root-mean-square deviation of the random variable from
the ensemble average.
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The special role in probability theory is played by the normal distribution (Gauss’s
law) that is caused, first and foremost, by the fact that there is a limit law to which other
distribution laws come down (under certain conditions).

Let’s say that the continuous random variable of X is distributed under the normal
law N(μ, σ), then its density function has the following appearance (Gauss’s function)
(A.2) and it is illustrated in Figure A.2.

( ) ( )2

2
1

exp ,
2 2

x
f x x R

⎛ ⎞− μ⎜ ⎟= − ∈
⎜ ⎟σ π σ⎝ ⎠

(A.2)

Fig. A.2. Function graph of density of normal distributions
(Gauss’s function) for μ = 1, σ = 1

Let’s notice that, according to the normal law the most different sizes, (for exam-
ple, of the error of measurements, details wear in mechanisms, the weight of fruits
and animals, human height, rate fluctuations of actions and many other things) are
distributed.

Despite importance of the one-dimensional case, for us, the consideration of the
case of many variables is more urgent.

The arranged set (X1, X2, …, Xn) of random quantities Xi (i = 1, 2, …, n) on the
same set Ω is called the n-dimensional random variable. One-dimensional random
quantities X1, X2, …, Xn are called components of the n-dimensional random variable.
It is convenient to consider components as the coordinate of the accidental vector
X = (X1, X2, …, Xn) in n-dimensional space of measurements.
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The arranged couple (X, Y) of two random quantities is called the two-dimension-
al random variable. Total characteristic of system (X, Y) is distribution of probabilities
specifying area in regard to possible values of random quantities and probability of
these values.

Distribution function of the two-dimensional random variable (X, Y) function is
called F(x, y), which for any two real numbers x and y is equal to probability of joint
performance of two events {X ≤ x} and {Y ≤ y}, that is

( ) { } ( ) ( )( ), , : , .F x y P X x Y y P X x Y y= ≤ ≤ = ω∈ Ω ω ≤ ω ≤

For discrete accidental couple (X, Y) as density function we will put

( ) ( ), , .p x y P X x Y y= = =

In the continuous case the function f(x, y) ≥ 0 is called the density function of
probability distribution, if

( ) ( ) ( ), , , .
a b

F a b P X a Y b f x y dxdy
−∞−∞

= ≤ ≤ = ∫ ∫

Then

( ) ( ), , .
b d

a c

P a x b c y d f x y dxdy≤ ≤ ≤ ≤ = ∫ ∫

Let’s notice that

( ) ( )
2

, , .F x y f x y
x y
∂ =

∂ ∂

The important role in further researches is played by the joint moment of the sec-
ond order called covariance

( ) ( )( ) ( )( )( ) ( ) ( ) ( )cov , .X Y E X E X Y E Y E XY E X E Y= − − = −

In the coordinate form the covariance can be written down in the following form

( ) ( )( ) ,
1 1

cov , ,
n m

i X j Y i j
i j

X Y x y p
= =

= − μ − μ∑∑

where ( ), , .i j i jp p x y=
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If for two random quantities of X and Y at increase of one random variable there is
the tendency to increase of the other, then cov(X, Y)> 0; If at increase of one random
variable there is the tendency to decrease of the other, then cov(X, Y) < 0.

If the behavior is not predictable, then cov(X, Y) = 0. In this case we can say that
random quantities are not correlated, but it does not mean that they are independent,
even though, for independent random quantities cov(X, Y) = 0. The normalized cova-
riance is called correlation (see eq. (A.3))

( ) ( )
( ) ( )

cov ,
1 , 1

var var

X Y
cor X Y

X Y
− ≤ = ≤ (A.3)

Let X = (X1, X2, …, Xn) be a vector. Its coordinates are random quantities, then

( ) ( ) ( )( )( )
( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

1 2

1 1 1 1 1 1

1 1

cov cov , , ...,

.

T
n

n n

n n n n n n

X X X X E X u X u

E X X E X X

E X X E X X

= = Σ = − − =

⎛ ⎞− μ − μ − μ − μ
⎜ ⎟

= = Σ⎜ ⎟
⎜ ⎟⎜ ⎟− μ − μ − μ − μ⎝ ⎠

�

� � �

�

The matrix Σ is called covariation matrix.
For the case of many variables the continuous n-dimensional random variable

of X is distributed under the normal law N(μ, Σ), if its density function has the
appearance

( )
( )

( ) ( )( )

( )
( )

1
/ 2 1 / 2

1 1
1

1 1/ 2 1 / 2

1 1
exp

22

1 1
exp , ..., .

22

T
n

n nn

n n

f x x x

x

x x

x

−

−

⎛ ⎞= − − μ Σ − μ =⎜ ⎟⎝ ⎠π Σ

⎛ ⎞− μ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

= − − μ − μ Σ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟π Σ ⎜ ⎟⎜ ⎟⎜ ⎟− μ⎝ ⎠⎝ ⎠⎝ ⎠

�

There is the covariation matrix Σ, its determinant |Σ| and its inverse Σ–1.
The example of two-dimentsional density function is presented in Figure A.3.
If all sizes (X1, X2, …, Xn) are independent, density function will have the follow-

ing form

( ) ( )2

2
1

1
exp .

2 2

n
i i

i ii

x
f x

=

⎛ ⎞− μ⎜ ⎟= −
⎜ ⎟σ π σ⎝ ⎠

∏
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Fig. A.3. The graph of density function 
1 1 0.5

,
2 0.5 1

N
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Let Φ be the matrix, which columns are combined eigenvectors of the matrix Σ,
then (owing to the orthonormality)

1 .T−Φ = Φ

If ,ΣΦ = ΦΛ  where Λ is the scalar matrix with the corresponding eigenvalues
of the matrix Σ on diagonal, then 1−Σ = ΦΛΦ  and, therefore 1 1 1.− − −Σ = ΦΛ Φ
Through 1 / 2−Λ  let’s designate the matrix, such that 1 / 2 1 / 2 1,− − −Λ Λ = Λ  then

( )( )1 1 / 2 1 / 2 .
T T− − −Σ = ΦΛ ΦΛ = ΞΞ

Thus

( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

1

2
.

T T T

TT T T

x x x x

x x x

−− μ Σ − μ = − μ ΞΞ − μ =

= Ξ − μ Ξ − μ = Ξ − μ

Noticing that the matrix Ξ represents the matrix of transformations (rotations and

scaling), we receive that points x, meeting the condition ( )
2

constT xΞ − μ ≡  lie on the

ellipse (see Fig. A.4).
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Eigenvectors of the matrix Σ

Fig. A.4. The set of points equidistant from the center
in sense of Mahalanobis distance

Number ( ) ( )( )1Tx x−− μ Σ − μ  is called Mahalanobis’s distance between x and μ

(see Fig. A.4). In particular, if all sizes (X1, X2, …, Xn) are independent, the Mahalanobis’s

distance degenerates to Euclidean distance ( ) ( )( )Tx x− μ − μ  (see Fig. A.5).

Fig. A.5. The set of points equidistant from the center
in sense of Euclidean distance

Let’s give the example of two-dimensional Gaussian function.

Let ( )
1 0.5

1,2 and ,
0.5 1

⎛ ⎞
μ = Σ = ⎜ ⎟⎜ ⎟⎝ ⎠

 then level lines of the corresponding function of

Gauss will have the form presented in Figure A.6.

If ( )
1 0

1, 2 , ,
0 1

⎛ ⎞
μ = Σ = ⎜ ⎟⎜ ⎟⎝ ⎠

 the representation is degenerate to spherical function of

Gauss (see Fig. A.7).
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Fig. A.6. Isolines of Gaussian function with ( )
1 0.5

1, 2 ,
0.5 1

⎛ ⎞
μ = Σ = ⎜ ⎟⎜ ⎟⎝ ⎠
 

Fig. A.7. Isolines of the spherical function of Gauss at ( )
1 0

1, 2 ,
0 1

⎛ ⎞
μ = Σ = ⎜ ⎟⎜ ⎟⎝ ⎠

If n-dimensional random variable X has density N(μ, Σ), size AX has density

( ), ,T TN A A Aμ Σ  thus for any random variable of X it is possible to pick up the trans-
formation transferring to the random variable with the spherical density function (see
Fig. A.8).
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Fig. A.8. Transformation of the random quantity with the density function with 
1 0.5

0.5 1

⎛ ⎞
Σ = ⎜ ⎟⎜ ⎟⎝ ⎠in the random quantity with the spherical function of density

More information relating to statistical analysis the reader can find for example in
Berry, Browne 2006, Hand et al. 2001, Larose 2005, Press et al. 2007, Rao, Toutenburg
1999, Theodordis, Koutroumbas 2006, and Vapnik 2000.
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CD contents

Each file contains programs from the sections of the book:

Section 1: Least Squares Methods

Section 2: Principal Component Analysis

Section 4:  Soft Computing in Data Handling

Section 5a: Hierarchical clustering

Section 5b: Nonhierarchical clustering

Section 9: Visualization of multidimensional data

Two folders with the object oriented application:

Section 6.4.1: Example of sale of the Naive Bayes classifier 4.2.3

Simple GP: Example of GP form Section 4.2.3


